2,845 research outputs found

    Compton reflection in AGN with Simbol-X

    Full text link
    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies above 20 keV.Comment: 4 pages, 1 figure, to appear in the proceedings of the second Simbol-X Symposium "Simbol-X - Focusing on the Hard X-ray Universe", AIP Conf. Proc. Series, P. Ferrando and J. Rodriguez ed

    The Second INTEGRAL AGN Catalogue

    Full text link
    The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows testing of the unified scheme for AGN. We present analysis of INTEGRAL IBIS/ISGRI, JEM-X, and OMC data for 199 AGN supposedly detected by INTEGRAL above 20 keV. The data analysed here allow a significant spectral extraction on 148 objects and an optical variability study of 57 AGN. The slopes of the hard X-ray spectra of Seyfert 1 and Seyfert~2 galaxies are found to be consistent within the uncertainties, whereas higher cut-off energies and lower luminosities are measured for the more absorbed / type 2 AGN. The intermediate Seyfert 1.5 objects exhibit hard X-ray spectra consistent with those of Seyfert 1. When applying a Compton reflection model, the underlying continua appear the same in Seyfert 1 and 2 with photon index 2, and the reflection strength is about R = 1, when assuming different inclination angles. A significant correlation is found between the hard X-ray and optical luminosity and the mass of the central black hole in the sense that the more luminous objects appear to be more massive. There is also a general trend toward the absorbed sources and type 2 AGN having lower Eddington ratios. The black holemass appears to form a fundamental plane together with the optical and X-ray luminosity of the form Lv being proportional to Lx^0.6 M^0.2, similar to that found between radio luminosity Lr, Lx, and M. The unified model for Seyfert galaxies seems to hold, showing in hard X-rays that the central engine is the same in Seyfert 1 and 2, but seen under different inclination angles and absorption. (Abridged)Comment: 26 pages, 16 figures, accepted for publication in A&A. Corrections by language editor included in version

    AGN's UV and X-ray luminosities in clumpy accretion flows

    Full text link
    We consider the fuelling of the central massive black hole in Active Galactic Nuclei, through an inhomogeneous accretion flow. Performing simple analytical treatments, we show that shocks between elements (clumps) forming the accretion flow may account for the UV and X-ray emission in AGNs. In this picture, a cascade of shocks is expected, where optically thick shocks give rise to optical/UV emission, while optically thin shocks give rise to X-ray emission. The resulting blue bump temperature is found to be quite similar in different AGNs. We obtain that the ratio of X-ray luminosity to UV luminosity is smaller than unity, and that this ratio is smaller in massive objects compared to less massive sources. This is in agreement with the observed LX/LUVL_{X}/L_{UV} ratio and suggests a possible interpretation of the αOX−lUV\alpha_{OX}-l_{UV} anticorrelation.Comment: 8 pages, 1 figure, accepted for publication in A&

    X-ray power law spectra in active galactic nuclei

    Full text link
    X-ray spectra of active galactic nuclei (AGN) are usually described as power law spectra, characterized by the spectral slope α\alpha or photon index Γ\Gamma. Here we discuss the X-ray spectral properties within the framework of clumpy accretion flows, and estimate the power law slope as a function of the source parameters. We expect harder spectra in massive objects than in less massive sources, and steeper spectra in higher accretion rate systems. The predicted values of the photon index cover the range of spectral slopes typically observed in Seyfert galaxies and quasars. The overall trends are consistent with observations, and may account for the positive correlation of the photon index with Eddington ratio (and the possible anticorrelation with black hole mass) observed in different AGN samples. Spectral properties are also closely related to variability properties. We obtain that shorter characteristic time scales are associated with steeper spectra. This agrees with the observed `spectral-timing' correlation.Comment: 6 pages, 1 figure, Astronomy and Astrophysics, accepte

    The efficient low-mass Seyfert MCG-05-23-016

    Full text link
    The Seyfert 1.9 galaxy MCG-05-23-016 has been shown to exhibit a complex X-ray spectrum. This source has moderate X-ray luminosity, hosts a comparably low-mass black hole, but accretes at a high Eddington rate, and allows us to study a super massive black hole in an early stage. Three observations of the INTEGRAL satellite simultaneous with pointed Swift/XRT observations performed from December 2006 to June 2007 are used in combination with public data from the INTEGRAL archive to study the variability of the hard X-ray components and to generate a high-quality spectrum from 1 to 150 keV. The AGN shows little variability in the hard X-ray spectrum, with some indication of a variation in the high-energy cut-off energy ranging from 50 keV to >>100 keV, with an electron plasma temperature in the 10 - 90 keV range. The reflection component is not evident and, if present, the reflected fraction can be constrained to R < 0.3 for the combined data set. Comparison to previous observations shows that the reflection component has to be variable. No variability in the UV and optical range is observed on a time scale of 1.5 years. The hard X-ray spectrum of MCG-05-23-016 appears to be stable with the luminosity and underlying power law varying moderately and the optical/UV flux staying constant. The spectral energy distribution appears to be similar to that of Galactic black hole systems, e.g. XTE 1118+480 in the low state. The AGN exhibits a remarkably high Eddington ratio of L(bol)/L(Edd)> 0.8 (or L(bol)/L(Edd) > 0.1, if we consider a higher mass of the central engine) and, at the same time, a low cut-off energy around 70 keV. Objects like MCG-05-23-016 might indicate the early stages of super massive black holes, in which a strong accretion flow feeds the central engine.Comment: 8 pages, 5 figures, accepted for publication in A&

    Hard X-ray Variability of AGN

    Full text link
    Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are used to study the 14 - 195 keV variability of the 44 brightest AGN. The sources have been selected due to their detection significance of >10 sigma. We tested the variability using a maximum likelihood estimator and by analysing the structure function. Results: Probing different time scales, it appears that the absorbed AGN are more variable than the unabsorbed ones. The same applies for the comparison of Seyfert 2 and Seyfert 1 objects. As expected the blazars show stronger variability. 15% of the non-blazar AGN show variability of >20% compared to the average flux on time scales of 20 days, and 30% show at least 10% flux variation. All the non-blazar AGN which show strong variability are low-luminosity objects with L(14-195 keV) < 1E44 erg/sec. Conclusions: Concerning the variability pattern, there is a tendency of unabsorbed or type 1 galaxies being less variable than the absorbed or type 2 objects at hardest X-rays. A more solid anti-correlation is found between variability and luminosity, which has been previously observed in soft X-rays, in the UV, and in the optical domain.Comment: 9 pages, 7 figures, accepted for publication in A&

    Extreme flux states of NGC 4151 observed with INTEGRAL

    Get PDF
    We present a comprehensive spectral analysis of all INTEGRAL data obtained so far for the X-ray-bright Seyfert galaxy NGC 4151. We also use all contemporaneous data from RXTE, XMM-Newton, Swift and Suzaku. We find a linear correlation between the medium- and hard-energy X-ray fluxes measured by INTEGRAL, which indicates an almost constant spectral index over 6 yr. The majority of INTEGRAL observations were made when the source was either at a very bright or very dim hard-X-ray state. We find that thermal Comptonization models applied to the bright state yields the plasma temperature of ≃50-70 keV and its optical depth of ≃1.3-2.6, depending on the assumed source geometry. For the dim state, these parameters are in the ranges of ≃180-230 keV and ≃0.3-0.7, respectively. The Compton parameter is for all the spectra, indicating a stable geometry. Using this result, we can determine the reflection effective solid angles associated with the close and distant reprocessing media as and , respectively. The plasma energy balance, the weak disc reflection and a comparison of the UV fluxes illuminating the plasma to the observed ones are all consistent with an inner hot accretion surrounded by an outer cold disc. The disc truncation radius can be determined from an approximate equipartition between the observed UV and X-ray emission, and from the fitted disc blackbody model, as ∌15 gravitational radii. Alternatively, our results can be explained by a mildly relativistic coronal outflo

    An active state of the BL Lac Object Markarian 421 detected by INTEGRAL in April 2013

    Get PDF
    Multiwavelength variability of blazars offers indirect insight into their powerful engines and on the mechanisms through which energy is propagated from the centre down the jet. The BL Lac object Mkn 421 is a TeV emitter, a bright blazar at all wavelengths, and therefore an excellent target for variability studies. Mkn 421 was observed by INTEGRAL and Fermi-LAT in an active state on 16-21 April 2013. Well sampled optical, soft, and hard X-ray light curves show the presence of two flares. The average flux in the 20-100 keV range is 9.1e-11 erg/s/cm2 (~4.5 mCrab) and the nuclear average apparent magnitude, corrected for Galactic extinction, is V ~12.2. In the time-resolved X-ray spectra (3.5-60 keV), which are described by broken power laws and, marginally better, by log-parabolic laws, we see a hardening that correlates with flux increase, as expected in refreshed energy injections in a population of electrons that later cool via synchrotron radiation. The hardness ratios between the JEM-X fluxes in two different bands and between the JEM-X and IBIS/ISGRI fluxes confirm this trend. During the observation, the variability level increases monotonically from the optical to the hard X-rays, while the large LAT errors do not allow a significant assessment of the MeV-GeV variability. The cross-correlation analysis during the onset of the most prominent flare suggests a monotonically increasing delay of the lower frequency emission with respect to that at higher frequency, with a maximum time-lag of about 70 minutes, that is however not well constrained. The spectral energy distributions from the optical to the TeV domain are satisfactorily described by homogeneous models of blazar emission based on synchrotron radiation and synchrotron self-Compton scattering, except in the state corresponding to the LAT softest spectrum and highest flux.Comment: 11 pages, 6 figures, in press in A&
    • 

    corecore