494 research outputs found

    Allowed and forbidden transitions in artificial hydrogen and helium atoms

    Full text link
    The strength of radiative transitions in atoms is governed by selection rules. Spectroscopic studies of allowed transitions in hydrogen and helium provided crucial evidence for the Bohr's model of an atom. Forbidden transitions, which are actually allowed by higher-order processes or other mechanisms, indicate how well the quantum numbers describe the system. We apply these tests to the quantum states in semiconductor quantum dots (QDs), which are regarded as artificial atoms. Electrons in a QD occupy quantized states in the same manner as electrons in real atoms. However, unlike real atoms, the confinement potential of the QD is anisotropic, and the electrons can easily couple with phonons of the material. Understanding the selection rules for such QDs is an important issue for the manipulation of quantum states. Here we investigate allowed and forbidden transitions for phonon emission in one- and two-electron QDs (artificial hydrogen and helium atoms) by electrical pump-and-probe experiments, and find that the total spin is an excellent quantum number in artificial atoms. This is attractive for potential applications to spin based information storage.Comment: slightly longer version of Nature 419, 278 (2002

    A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component

    Get PDF
    Background The Government of Senegal has embarked several years ago on a project that aims to eradicate Glossina palpalis gambiensis from the Niayes area. The removal of the animal try-panosomosis would allow the development more efficient livestock production systems. The project was implemented using an area-wide integrated pest management strategy including a sterile insect technique (SIT) component. The released sterile male flies originated from a colony from Burkina Faso. Methodology/Principal Findings Monitoring the efficacy of the sterile male releases requires the discrimination between wild and sterile male G.p. gambiensis that are sampled in monitoring traps. Before being released, sterile male flies were marked with a fluorescent dye powder. The marking was however not infallible with some sterile flies only slightly marked or some wild flies contaminated with a few dye particles in the monitoring traps. Trapped flies can also be damaged due to predation by ants, making it difficult to discriminate between wild and sterile males using a fluorescence camera and / or a fluorescence microscope. We developed a molecular technique based on the determination of cytochrome oxidase haplotypes of G. p. gambiensis to discriminate between wild and sterile males. DNA was isolated from the head of flies and a portion of the 5' end of the mitochondrial gene cytochrome oxidase I was amplified to be finally sequenced. Our results indicated that all the sterile males from the Burkina Faso colony displayed the same haplotype and systematically differed from wild male flies trapped in Senegal and Burkina Faso. This allowed 100% discrimination between sterile and wild male G. p. gambiensis. Conclusions/Significance This tool might be useful for other tsetse control campaigns with a SIT component in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) and, more generally, for other vector or insect pest control programs

    Extreme magnesium isotope fractionation at outcrop scale records the mechanism and rate at which reaction fronts advance

    Get PDF
    Isotopic fractionation of cationic species during diffusive transport provides novel means of constraining the style and timing of metamorphic transformations. Here we document a major (~1‰) decrease in the Mg isotopic composition of the reaction front of an exhumed contact between rocks of subducted crust and serpentinite, in the Syros mélange zone. This isotopic perturbation extends over a notable length-scale (~1 m), implicating diffusion of Mg through an intergranular fluid network over a period of ~100 kyr. These novel observations confirm models of diffusion-controlled growth of reaction zones formed between rocks of contrasting compositions, such as found at the slab-mantle interface in subduction zones. The results also demonstrate that diffusive processes can result in exotic stable isotope compositions of major elements with implications for mantle xenoliths and complex intrusions

    Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development

    No full text
    Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA

    Phenomenology of reaction-diffusion binary-state cellular automata

    Get PDF
    We study a binary-cell-state eight-cell neighborhood two-dimensional cellular automaton model of a quasi-chemical system with a substrate and a reagent. Reactions are represented by semitotalistic transitions rules: every cell switches from state 0 to state 1 depending on if the sum of neighbors in state 1 belongs to some specified interval, cell remains in state 1 if the sum of neighbors in state 1 belong to another specified interval. We investigate space-time dynamics of 1296 automata, establish morphology-bases classification of the rules, explore precipitating and excitatory cases and scrutinize collisions between mobile and stationary localizations (gliders, cycle life and still-life compact patterns). We explore reaction-diffusion like patterns produced as a result of collisions between localizations. Also, we propose a set of rules with complex behavior called Life 2c22. © World Scientific Publishing Company

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (XX^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all XX^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the XX^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different XX^- states unbind are surprisingly small compared to the well width, the observation of strongly bound XX^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of XX^- recombination

    Blood pressure and metabolic effects of acetyl-L-carnitine in type 2 diabetes: DIABASI randomized controlled trial

    Get PDF
    Context: Acetyl-L-carnitine (ALC), a mitochondrial carrier involved in lipid oxidation and glucose metabolism, decreased systolic blood pressure (SBP), and ameliorated insulin sensitivity in hypertensive nondiabetic subjects at high cardiovascular risk. Objective: To assess the effects of ALC on SBP and glycemic and lipid control in patients with hypertension, type 2 diabetes mellitus (T2D), and dyslipidemia on background statin therapy. Design: After 4-week run-in period and stratification according to previous statin therapy, patients were randomized to 6-month, double-blind treatment with ALC or placebo added-on simvastatin. Setting: Five diabetology units and one clinical research center in Italy. Patients: Two hundred twenty-nine patients with hypertension and dyslipidemic T2D > 40 years with stable background antihypertensive, hypoglycemic, and statin therapy and serum creatinine < 1.5 mg/ dL. Interventions: Oral ALC 1000 mg or placebo twice daily on top of stable simvastatin therapy. Outcome and Measures: Primary outcome was SBP. Secondary outcomes included lipid and glycemic profiles. Total-body glucose disposal rate and glomerular filtration rate were measured in subgroups by hyperinsulinemic-euglycemic clamp and iohexol plasma clearance, respectively. Results: SBP did not significantly change after 6-month treatment with ALC compared with placebo (-2.09mmHg vs-3.57mmHg, P = 0.9539). Serum cholesterol, triglycerides, and lipoprotein(a), as well as blood glucose, glycated hemoglobin, fasting insulin levels, homeostatic model assessment of insulin resistance index, glucose disposal rate, and glomerular filtration rate did not significantly differ between treatments. Adverse events were comparable between groups. Conclusions: Six-month oral ALC supplementation did not affect blood pressure, lipid and glycemic control, insulin sensitivity and kidney function in hypertensive normoalbuminuric and microalbuminuric T2D patients on background statin therapy
    corecore