35 research outputs found

    A white humpback whale (Megaptera novaeangliae) in the Atlantic Ocean, Svalbard, Norway, August 2012

    Get PDF
    A white humpback whale (Megaptera novaeangliae) was observed on several occasions off Svalbard, Norway, during August 2012. The animal was completely white, except for a few small dark patches on the ventral side of its fluke. The baleen plates were light-coloured, but the animal's eyes had normal (dark) colouration. This latter characteristic indicates that the animal was not an albino; it was a leucistic individual. The animal was a full-sized adult and was engaged in “bubble-feeding”, together with 15–20 other humpback whales, each time it was seen. Subsequent to these sightings, polling of the marine mammal science community has resulted in the discovery of two other observations of white humpback whales in the Barents Sea area, one in 2004 and another in 2006; in both cases the observed individuals were adult animals. It is likely that all of these sightings are of the same individual, but there is no genetic or photographic evidence to confirm this suggestion. The rarity of observations of such white individuals suggests that they are born at very low frequencies or that the ontogenetic survival rates of the colour morph are low

    Biomass of Scyphozoan Jellyfish, and Its Spatial Association with 0-Group Fish in the Barents Sea

    Get PDF
    An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region

    The small pelagic fishery of the Pemba Channel, Tanzania: what we know and what we need to know for management under climate change

    Get PDF
    Small pelagic fish, including anchovies, sardines and sardinellas, mackerels, capelin, hilsa, sprats and herrings, are distributed widely, from the tropics to the far north Atlantic Ocean and to the southern oceans off Chile and South Africa. They are most abundant in the highly productive major eastern boundary upwelling systems and are characterised by significant natural variations in biomass. Overall, small pelagic fisheries represent about one third of global fish landings although a large proportion of the catch is processed into animal feeds. Nonetheless, in some developing countries in addition to their economic value, small pelagic fisheries also make an important contribution to human diets and the food security of many low-income households. Such is the case for many communities in the Zanzibar Archipelago and on mainland Tanzania in the Western Indian Ocean. Of great concern in this region, as elsewhere, is the potential impact of climate change on marine and coastal ecosystems in general, and on small pelagic fisheries in particular. This paper describes data and information available on Tanzania's small pelagic fisheries, including catch and effort, management protocols and socio-economic significance

    Do abiotic mechanisms determine interannual variability in length-at-age of juvenile Arcto-Norwegian cod?

    No full text
    For the large Arcto-Norwegian stock of cod (Gadus morhua L.) in the Barents Sea, year-to-year variability in growth is well documented. Here three hypotheses for the observed inverse relation between abundance and the mean length-at-age of juveniles (ages 1–4) are suggested and evaluated. Based on comprehensive data, we conclude that year-to-year differences in length-at-age are mainly determined by density-independent mechanisms during the pelagic first half year of the fishes’ life. Enhanced inflow from the southwest leads to an abundant cohort at the 0- group stage being distributed farther east into colder water masses, causing lower postsettlement growth rates. We can not reject density-dependent growth effects related to variability in food rations, but our data do not suggest this to be the main mechanism. Another hypothesis suggests that lower growth rates during periods of high abundance are a result of density-dependent mechanisms causing the geographic range of juveniles to extend eastwards into colder water masses. This is rejected mainly because year-to-year differences in mean length are established by age 2, which is too early for movements over large distances
    corecore