31 research outputs found

    Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later

    Get PDF
    Visuospatial working memory (WM) capacity is highly correlated with mathematical reasoning abilities and can predict future development of arithmetical performance. Activity in the intraparietal sulcus (IPS) during visuospatial WM tasks correlates with interindividual differences in WM capacity. This region has also been implicated in numerical representation, and its structure and activity reflect arithmetical performance impairments (e.g., dyscalculia). We collected behavioral (N = 246) and neuroimaging data (N = 46) in a longitudinal sample to test whether IPS activity during a visuospatial WM task could provide more information than psychological testing alone and predict arithmetical performance 2 years later in healthy participants aged 6–16 years. Nonverbal reasoning and verbal and visuospatial WM measures were found to be independent predictors of arithmetical outcome. In addition, WM activation in the left IPS predicted arithmetical outcome independently of behavioral measures. A logistic model including both behavioral and imaging data showed improved sensitivity by correctly classifying more than twice as many children as poor arithmetical performers after 2 years than a model with behavioral measures only. These results demonstrate that neuroimaging data can provide useful information in addition to behavioral assessments and be used to improve the identification of individuals at risk of future low academic performance

    The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53

    Get PDF
    Desmoglein-3 (Dsg3), the Pemphigus Vulgaris (PV) antigen (PVA), plays an essential role in keratinocyte cell–cell adhesion and regulates various signaling pathways involved in the progression and metastasis of cancer where it is upregulated. We show here that expression of Dsg3 impacts on the expression and function of p53, a key transcription factor governing the responses to cellular stress. Dsg3 depletion increased p53 expression and activity, an effect enhanced by treating cells with UVB, mechanical stress and genotoxic drugs, whilst increased Dsg3 expression resulted in the opposite effects. Such a pathway in the negative regulation of p53 by Dsg3 was Dsg3 specific since neither E-cadherin nor desmoplakin knockdown caused similar effects. Analysis of Dsg3−/− mouse skin also indicated an increase of p53/p21WAF1/CIP1 and cleaved caspase-3 relative to Dsg3+/− controls. Finally, we evaluated whether this pathway was operational in the autoimmune disease PV in which Dsg3 serves as a major antigen involved in blistering pathogenesis. We uncovered increased p53 with diffuse cytoplasmic and/or nuclear staining in the oral mucosa of patients, including cells surrounding blisters and the pre-lesional regions. This finding was verified by in vitro studies where treatment of keratinocytes with PV sera, as well as a characterized pathogenic antibody specifically targeting Dsg3, evoked pronounced p53 expression and activity accompanied by disruption of cell–cell adhesion. Collectively, our findings suggThe study was supported by the Barts and The London School of Medicine and Dentistry and Guizhou Medical University, China. The animal work was supported by Deutsche Forschungsgemeinschaft (TR-SFB 156). Jutamas Uttagomol was supported by a scholarship from Naresuan University, Thailand

    Processing Ordinality and Quantity: The Case of Developmental Dyscalculia

    Get PDF
    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information

    Developmental dyscalculia: a dysconnection syndrome?

    Full text link
    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia

    Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns

    No full text
    ArticleSpecies mixing is widely held to stabilize productivity, increase resilience and contribute to risk minimization in forest stands in need of special as a result of longevity. However, research on the effects of mixing on productivity and resource consumption so far yielded fairly incoherent results rather than general findings. We focused on the effects of the spatial mixing pattern and the annual climate conditions on the mixing effect, which to date have seldom been considered as modifiers of mixing effects. Nine years of intensive survey of four pure stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) and two mixed plots with different mixing pattern showed: (1) mixing hardly changed annual net primary productivity at stand level when Norway spruce and European beech are cultivated group-wise but increased by 37 % on account of a higher efficiency of water and light use in individual tree-wise mixture. (2) Favourable climatic conditions increased the superiority of mixed versus pure stands productivity, while, in particular, water stress cancelled the benefit of mixing considerably. (3) An interaction between the spatial pattern and variable climatic conditions was revealed. Both improved light and water use were found in favourable years in close inter-specific intermingling. However, in unfavourable years the spatial pattern played a less pronounced role in terms of productivity. © 2012 Springer-Verlag

    Optimized voxel-based morphometry in children with developmental dyscalculia.

    No full text
    Developmental dyscalculia (DD) is a specific learning disability affecting the normal acquisition of arithmetic skills. Current studies estimate that 3-6% of the school population is affected by DD. Genetic, neurobiological, and epidemiologic evidence indicates that dyscalculia is a brain-based disorder. Imaging studies suggest the involvement of parietal and prefrontal cortices in arithmetic tasks. The aim of the present study was to analyze if children with DD show structural differences in parietal, frontal, and cingulate areas compared to typically achieving children. Magnetic resonance imaging was obtained from 12 children with DD aged 9.3+/-0.2 years and 12 age-matched control children without any learning disabilities on a 1.5 T whole-body scanner. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures was applied to compare the two groups in order to find differences in cerebral gray and white matter. Compared to controls, children with DD show significantly reduced gray matter volume in the right intraparietal sulcus (IPS), the anterior cingulum, the left inferior frontal gyrus, and the bilateral middle frontal gyri. White matter comparison demonstrates clusters with significantly less volume in the left frontal lobe and in the right parahippocampal gyrus in dyscalculic children. The decreased gray and white matter volumes in the frontoparietal network might be the neurological substrate of impaired arithmetic processing skills. The white matter volume decrease in parahippocampal areas may have influence on fact retrieval and spatial memory processing

    Optimized voxel-based morphometry in children with developmental dyscalculia.

    No full text
    Developmental dyscalculia (DD) is a specific learning disability affecting the normal acquisition of arithmetic skills. Current studies estimate that 3-6% of the school population is affected by DD. Genetic, neurobiological, and epidemiologic evidence indicates that dyscalculia is a brain-based disorder. Imaging studies suggest the involvement of parietal and prefrontal cortices in arithmetic tasks. The aim of the present study was to analyze if children with DD show structural differences in parietal, frontal, and cingulate areas compared to typically achieving children. Magnetic resonance imaging was obtained from 12 children with DD aged 9.3+/-0.2 years and 12 age-matched control children without any learning disabilities on a 1.5 T whole-body scanner. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures was applied to compare the two groups in order to find differences in cerebral gray and white matter. Compared to controls, children with DD show significantly reduced gray matter volume in the right intraparietal sulcus (IPS), the anterior cingulum, the left inferior frontal gyrus, and the bilateral middle frontal gyri. White matter comparison demonstrates clusters with significantly less volume in the left frontal lobe and in the right parahippocampal gyrus in dyscalculic children. The decreased gray and white matter volumes in the frontoparietal network might be the neurological substrate of impaired arithmetic processing skills. The white matter volume decrease in parahippocampal areas may have influence on fact retrieval and spatial memory processing
    corecore