1,528 research outputs found

    Quasiparticle light elements and quantum condensates in nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements (2A42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(P; T, n_n,n_p) that depend on the center of mass momentum P\vec P, the temperature TT, and the total densities nn,npn_n,n_p of neutrons and protons, respectively. We consider the composition and thermodynamic properties of nuclear matter at low densities. At low temperatures, quartetting is expected to occur. Consequences for different physical properties of nuclear matter and finite nuclei are discussed.Comment: 5 pages, 1 figure, 2 table

    Nanopositioning of a diamond nanocrystal containing a single NV defect center

    Full text link
    Precise control over the position of a single quantum object is important for many experiments in quantum science and nanotechnology. We report on a technique for high-accuracy positioning of individual diamond nanocrystals. The positioning is done with a home-built nanomanipulator under real-time scanning electron imaging, yielding an accuracy of a few nanometers. This technique is applied to pick up, move and position a single NV defect center contained in a diamond nanocrystal. We verify that the unique optical and spin properties of the NV center are conserved by the positioning process.Comment: 3 pages, 3 figures; high-resolution version available at http://www.ns.tudelft.nl/q

    Structural evolution in Pt isotopes with the Interacting Boson Model Hamiltonian derived from the Gogny Energy Density Functional

    Get PDF
    Spectroscopic calculations are carried out, for the description of the shape/phase transition in Pt nuclei in terms of the Interacting Boson Model (IBM) Hamiltonian derived from (constrained) Hartree-Fock-Bogoliubov (HFB) calculations with the finite range and density dependent Gogny-D1S Energy Density Functional. Assuming that the many-nucleon driven dynamics of nuclear surface deformation can be simulated by effective bosonic degrees of freedom, the Gogny-D1S potential energy surface (PES) with quadrupole degrees of freedom is mapped onto the corresponding PES of the IBM. Using this mapping procedure, the parameters of the IBM Hamiltonian, relevant to the low-lying quadrupole collective states, are derived as functions of the number of valence nucleons. Merits of both Gogny-HFB and IBM approaches are utilized so that the spectra and the wave functions in the laboratory system are calculated precisely. The experimental low-lying spectra of both ground-state and side-band levels are well reproduced. From the systematics of the calculated spectra and the reduced E2 transition probabilities BB(E2), the prolate-to-oblate shape/phase transition is shown to take place quite smoothly as a function of neutron number NN in the considered Pt isotopic chain, for which the γ\gamma-softness plays an essential role. All these spectroscopic observables behave consistently with the relevant PESs and the derived parameters of the IBM Hamiltonian as functions of NN. Spectroscopic predictions are also made for those nuclei which do not have enough experimental E2 data.Comment: 11 pages, 5 figure

    A recent appreciation of the singular dynamics at the edge of chaos

    Full text link
    We study the dynamics of iterates at the transition to chaos in the logistic map and find that it is constituted by an infinite family of Mori's qq-phase transitions. Starting from Feigenbaum's σ\sigma function for the diameters ratio, we determine the atypical weak sensitivity to initial conditions ξt\xi _{t} associated to each qq-phase transition and find that it obeys the form suggested by the Tsallis statistics. The specific values of the variable qq at which the qq-phase transitions take place are identified with the specific values for the Tsallis entropic index qq in the corresponding ξt\xi_{t}. We describe too the bifurcation gap induced by external noise and show that its properties exhibit the characteristic elements of glassy dynamics close to vitrification in supercooled liquids, e.g. two-step relaxation, aging and a relationship between relaxation time and entropy.Comment: Proceedings of: Verhulst 200 on Chaos, Brussels 16-18 September 2004, Springer Verlag, in pres

    Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?

    Full text link
    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.Comment: proceeding of the conference "Many body correlations from dilute to dense Nuclear systems", Paris, February 201

    Energy density functional on a microscopic basis

    Full text link
    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, on the contrary, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter Equation of State and the distinct features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Collective structural evolution in neutron-rich Yb, Hf, W, Os and Pt isotopes

    Get PDF
    An interacting boson model Hamiltonian determined from Hartree-Fock-Bogoliubov calculations with the new microscopic Gogny energy density functional D1M, is applied to the spectroscopic analysis of neutron-rich Yb, Hf, W, Os and Pt isotopes with mass A180200A\sim 180-200. Excitation energies and transition rates for the relevant low-lying quadrupole collective states are calculated by this method. Transitions from prolate to oblate ground-state shapes are analyzed as a function of neutron number NN in a given isotopic chain by calculating excitation energies, BB(E2) ratios, and correlation energies in the ground state. It is shown that such transitions tend to occur more rapidly for the isotopes with lower proton number ZZ, when departing from the proton shell closure Z=82. The triaxial degrees of freedom turn out to play an important role in describing the considered mass region. Predicted low-lying spectra for the neutron-rich exotic Hf and Yb isotopes are presented. The approximations used in the model and the possibilities to refine its predictive power are addressed.Comment: 12 pages, 7 figures, 1 table, accepted for publication in Phys. Rev.

    Separable approximation to two-body matrix elements

    Full text link
    Two-body matrix elements of arbitrary local interactions are written as the sum of separable terms in a way that is well suited for the exchange and pairing channels present in mean-field calculations. The expansion relies on the transformation to center of mass and relative coordinate (in the spirit of Talmi's method) and therefore it is only useful (finite number of expansion terms) for harmonic oscillator single particle states. The converge of the expansion with the number of terms retained is studied for a Gaussian two body interaction. The limit of a contact (delta) force is also considered. Ways to handle the general case are also discussed.Comment: 10 pages, 5 figures (for high resolution versions of some of the figures contact the author

    Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

    Full text link
    We uncover the dynamics at the chaos threshold μ\mu_{\infty} of the logistic map and find it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ\mu <\mu_{\infty}. We corroborate this structure analytically via the Feigenbaum renormalization group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a qq-exponential, of which we determine the qq-index and the qq-generalized Lyapunov coefficient λq\lambda _{q}. Our results are an unequivocal validation of the applicability of the non-extensive generalization of Boltzmann-Gibbs (BG) statistical mechanics to critical points of nonlinear maps.Comment: Revtex, 3 figures. Updated references and some general presentation improvements. To appear published as a Rapid communication of PR
    corecore