research

Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

Abstract

We uncover the dynamics at the chaos threshold μ\mu_{\infty} of the logistic map and find it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ\mu <\mu_{\infty}. We corroborate this structure analytically via the Feigenbaum renormalization group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a qq-exponential, of which we determine the qq-index and the qq-generalized Lyapunov coefficient λq\lambda _{q}. Our results are an unequivocal validation of the applicability of the non-extensive generalization of Boltzmann-Gibbs (BG) statistical mechanics to critical points of nonlinear maps.Comment: Revtex, 3 figures. Updated references and some general presentation improvements. To appear published as a Rapid communication of PR

    Similar works

    Full text

    thumbnail-image