257 research outputs found

    Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Get PDF
    The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS). From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR). Gravimetric variations and seismic Short Duration Events (SDE) confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 ). This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; www.emso-eu.org) research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater

    CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431

    Get PDF
    We present a quintuply lensed z ~ 6 candidate discovered in the field of the galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter. We perform a detailed photometric analysis to verify its high-z and lensed nature. We get as photometric redshift z_phot ~ 5.9, and given the extended nature and NIR colours of the lensed images, we rule out low-z early type and galactic star contaminants. We perform a strong lensing analysis of the cluster, using 13 families of multiple lensed images identified in the HST images. Our final best model predicts the high-z quintuply lensed system with a position accuracy of 0.8''. The magnifications of the five images are between 2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at z=6. We also estimate the UV slope from the observed NIR colours, finding a steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs to fit the photometry of the hiz candidate, and we conclude that it is a young (age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity (Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013, accepted on 23 Nov 201

    Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Get PDF
    The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS). From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR). Gravimetric variations and seismic Short Duration Events (SDE) confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 ). This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; www.emso-eu.org) research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater.Published2983A. Ambiente MarinoJCR Journalrestricte

    CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

    Get PDF
    We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 (z=0.348z=0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range 1.0−6.11.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of 0.30.3 in a fixed flat Λ\LambdaCDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68%68\% confidence level) Ωm=0.25−0.16+0.13\Omega_m=0.25^{+0.13}_{-0.16} and w=−1.07−0.42+0.16w=-1.07^{+0.16}_{-0.42} for a flat Λ\LambdaCDM model, and Ωm=0.31−0.13+0.12\Omega_m=0.31^{+0.12}_{-0.13} and ΩΛ=0.38−0.27+0.38\Omega_\Lambda=0.38^{+0.38}_{-0.27} for a universe with w=−1w=-1 and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be 0.3±0.10.3\pm 0.1.(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&

    CLASH-VLT: Dissecting the Frontier Fields Galaxy Cluster MACS J0416.1-2403 with ∌800\sim800 Spectra of Member Galaxies

    Get PDF
    We present VIMOS-VLT spectroscopy of the Frontier Fields cluster MACS~J0416.1-2403 (z=0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts, including ~800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ~2.2r200r_{200} (~4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M200M_{200}~0.9×1015M⊙\times 10^{15} M_{\odot}) presenting two major features: i) a bimodal velocity distribution, showing two central peaks separated by ΔVrf\Delta V_{rf}~1100 km s−1^{-1} with comparable galaxy content and velocity dispersion, ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent subclump ~600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low mass structure at z~0.390, ~10' S of the cluster center, projected at ~3Mpc, with a relative line-of-sight velocity of ΔVrf\Delta V_{rf}~-1700 km s−1^{-1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal overall a complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in line with recent findings from radio and deep X-ray data. With this article we also release the entire redshift catalog of 4386 sources in the field of this cluster.Comment: Accepted for publication on ApJS. Revised to match the accepted version; 21 pages, 18 figures, 9 tables. The CLASH-VLT spectroscopic catalogs are publicly available at: http://sites.google.com/site/vltclashpublic

    CLASH: A Census of Magnified Star-Forming Galaxies at z ~ 6-8

    Get PDF
    We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing clusters obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program to search for z∌6−8z\sim6-8 galaxies. We report the discovery of 204, 45, and 13 Lyman-break galaxy candidates at z∌6z\sim6, z∌7z\sim7, and z∌8z\sim8, respectively, identified from purely photometric redshift selections. This large sample, representing nearly an order of magnitude increase in the number of magnified star-forming galaxies at z∌6−8z\sim 6-8 presented to date, is unique in that we have observations in four WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters, which enable very accurate photometric redshift selections. We construct detailed lensing models for 17 of the 18 clusters to estimate object magnifications and to identify two new multiply lensed z≳6z \gtrsim 6 candidates. The median magnifications over the 17 clusters are 4, 4, and 5 for the z∌6z\sim6, z∌7z\sim7, and z∌8z\sim8 samples, respectively, over an average area of 4.5 arcmin2^2 per cluster. We compare our observed number counts with expectations based on convolving "blank" field UV luminosity functions through our cluster lens models and find rough agreement down to ∌27\sim27 mag, where we begin to suffer significant incompleteness. In all three redshift bins, we find a higher number density at brighter observed magnitudes than the field predictions, empirically demonstrating for the first time the enhanced efficiency of lensing clusters over field surveys. Our number counts also are in general agreement with the lensed expectations from the cluster models, especially at z∌6z\sim6, where we have the best statistics.Comment: Accepted for publication in the Astrophysical Journal, 25 pages, 13 figures, 7 table

    CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly-magnified by galaxy cluster members

    Get PDF
    We present a strong lensing system in which a double source is imaged 5 times by 2 early-type galaxies. We take advantage in this target of the multi-band photometry obtained as part of the CLASH program, complemented by the spectroscopic data of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift of 3.7 for the source and confirm spectroscopically the membership of the 2 lenses to the galaxy cluster MACS J1206.2-0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the 2 lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersions of (97 +/- 3) and (240 +/- 6) km/s. The total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, that is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of about (1.0 +/- 0.5) x 10^{9} M_{Sun}. By combining the total and luminous mass estimates of the 2 lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 +/- 0.21 and 0.80 +/- 0.32. With these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are about 2 and 3 times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales reveals the potential of studies of this kind for investigating the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.Comment: 20 pages, 10 figures, accepted for publication in the Astrophysical Journa

    Multiparametric seafloor exploration: the Marsili Basin and Volcanic Seamount case (Tyrrhenian Sea, Italy)

    Get PDF
    Exploration of ocean seafloor is of paramount importance for a better understanding of the geodynamic evolution of our Planet. The pilot experiment of ORION-GEOSTAR 3 EC project was the first long-term continuous geophysical and oceanographic experiment of an important seafloor area of Southern Tyrrhenian Sea, the Marsili abyssal plain. The latter hosts the Marsili Seamount which is Europe’s one of the largest underwater volcano of Plio-Pleistocenic age. In spite of its dimensions, it is rather unknown about the present characteristics and activity. For this reason, we deployed a deep-sea observatory network, composed by two bottom observatories, on the seafloor at the base of the seamount at 3320 m b.s.l., in the period December 2003-May 2005. Some of the instruments on board the observatory were: broad-band seismometers, hydrophones, gravity meter, two magnetometers (scalar and vectorial), 3D single-point current meter, ADCP, CTD, automatic pH analyser and off-line water sampler for laboratory analyses. The first successful scientific objective was to obtain long-term continuous recordings under a unique time reference. The data analysis shows that they are generally of good quality and really continuous (only a few gaps). As a first step we performed a classification of seismic waveforms, a first inversion of magnetic variational data, and a first analysis of gravity meter, chemical and oceanographic data. Analysis of individual time series has shown interesting results, i.e. depth of the magnetic Moho under the Marsili, attenuation of recorded seismic body waves and clues of hydrothermal circulation. We show examples of the preliminary data analysis together with first results and comparisons among data coming from different sensors.PublishedCambridge, UK, February 24-26, 20091.8. Osservazioni di geofisica ambientale3.8. Geofisica per l'ambienteope

    Underwater geophysical monitoring for European Multidisciplinary Seafloor and water column Observatories

    Get PDF
    We present a review of our work on data acquired by GEOSTAR-class (GEophysical and Oceanographic STation for Abyssal Research) observatories deployed at three EMSO (European Multidisciplinary Seafloor and water-column Observatory; http://www.emso-eu.org) sites in southern European waters where strong geo-hazards are present: the Western Iberian Margin, the Western Ionian Sea, the Marmara Sea, and the Marsili basin in the Tyrrhenian Sea. A procedure for multiparameter data quality control is described. Then we explain why the seafloor is an interesting observation point for geophysical parameters and how it differs from land sites. We consider four interesting geophysical phenomena found at the EMSO sites that are related to geo-hazard. In the first case, we show how unknown seismicity and landslides in the Western Ionian Sea were identified and roughly localised through a single-sensor analysis based on the seismometer. In the second case, we concentrate on the problem of near-coast tsunami generation and describe a Tsunami Early Warning Detection (TEWD) system, tested in the Western Iberian Margin and currently operating in real time at the Western Ionian site. In the third case, we consider two large volcanoes in the central Mediterranean area, Mt. Etna and the Marsili seamount. Signals from the seismometer and gravimeter recorded at the seafloor at 2100 m b.s.l. show various phases of Mt. Etna's 2002–2003 eruption. For the less-known Marsili we illustrate how several indicators coming from different sensors point to hydrothermal activity. A vector magnetometer at the two volcanic sites helps identify the magnetic lithospheric depth. In the fourth and final case, we present a multiparameter analysis which was focused on finding possible correlations between methane seepage and seismic energy release in the Gulf of Izmit (Marmara Sea).Published12–301A. Geomagnetismo e Paleomagnetismo6A. Monitoraggio ambientale, sicurezza e territorioJCR Journalrestricte

    Towards a permanent deep sea observatory,: the GEOSTAR European Experiment.

    Get PDF
    GEOSTAR is the prototype of the first European long-term, multidisciplinary deep sea observatory for continuous monitoring of geophysical, geochemical and oceanographic parameters. Geostar is the example of a strong synergy between science and tecnology addressed to the development of new technological solutions for the observatory realisation and management. The GEOSTAR system is described outlining the enhancements introduced during five years of project activity. An example of data retrieved from the observatory being the deep sea mission running is also given.Published111-1202.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarinireserve
    • 

    corecore