1,129 research outputs found

    Near-Infrared Imaging of Early-Type Galaxies IV. The Physical Origins of the Fundamental Plane Scaling Relations

    Get PDF
    The physical origins of the Fundamental Plane (FP) scaling relations are investigated for early-type galaxies observed at optical and near-infrared wavelengths. The slope for the FP is shown to increase systematically with wavelength from the U-band through the K-band. A distance-independent construction of the observables is described which provides an accurate measurement of the change in the FP slope between any pair of bandpasses. The variation of the FP slope with wavelength is strong evidence of systematic variations in stellar content along the elliptical galaxy sequence. The intercept of the diagnostic relationship between log(D_K/D_V) and log(sigma_0) shows no significant dependence on environment within the uncertainties of the Galactic extinction corrections, demonstrating the universality of the stellar populations contributions at the level of Delta(V-K)=0.03 mag to the zero-point of the global scaling relations. Several other constraints on the properties of early-type galaxies --- the slope of the Mg_2-sigma_0 relation, the effects of stellar populations gradients, and deviations of early-type galaxies from a dynamically homologous family --- are included to construct an empirical, self-consistent model which provides a complete picture of the underlying physical properties which are varying along the early-type galaxy sequence. This empirical approach demonstrates that there are significant systematic variations in both age and metallicity along the elliptical galaxy sequence, and that a small, but systematic, breaking of dynamical homology (or a similar, wavelength independent effect) is required. Predictions for the evolution of the slope of the FP with redshift are described. [abriged]Comment: to appear in The Astronomical Journal; 40 pages, including 10 Postscript figures and 3 tables; uses AAS LaTeX style file

    Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations?

    Get PDF
    Agricultural expansion across tropical regions is causing declines in biodiversity and altering ecological processes. However, in some tropical agricultural systems, conserving natural habitat can simultaneously protect threatened species and support important ecosystem services. Oil palm cultivation is expanding rapidly throughout the tropics but the extent to which non-crop habitat supports biodiversity and ecosystem services in these landscapes is poorly documented. We investigated whether riparian forest fragments (riparian reserves) provide a pest control service or increase pest activity (disservice) within oil palm dominated landscapes in Sabah, Malaysian Borneo. We assessed the activity of potential predators of pest herbivores using plasticine caterpillar mimics and quantified herbivory rates on oil palm fronds in areas with and without riparian reserves. We also manipulated the shape and colour of the mimics to assess the extent to which artificial pest mimics reflect a predatory response. The presence of riparian reserves increased the attack rate on mimics by arthropods, but not by birds. Our methodological study suggested attacks on artificial pest mimics provide a better indication of predatory activity for birds than for arthropod predators. Herbivory rates were also not significantly affected by the presence of a riparian reserve, but we found some evidence that herbivory rates may decrease as the size of riparian reserves increases. Overall, we conclude that riparian forest fragments of 30 – 50 m width on each side of the river are unlikely to provide a pest control service. Nevertheless, our results provide evidence that these riparian buffer strips do not increase the density of defoliating pests, which should reassure managers concerned about possible negative consequences of preserving riparian buffers

    POTENT Reconstruction from Mark III Velocities

    Full text link
    We present an improved POTENT method for reconstructing the velocity and mass density fields from radial peculiar velocities, test it with mock catalogs, and apply it to the Mark III Catalog. Method improvments: (a) inhomogeneous Malmquist bias is reduced by grouping and corrected in forward or inverse analyses of inferred distances, (b) the smoothing into a radial velocity field is optimized to reduce window and sampling biases, (c) the density is derived from the velocity using an improved nonlinear approximation, and (d) the computational errors are made negligible. The method is tested and optimized using mock catalogs based on an N-body simulation that mimics our cosmological neighborhood, and the remaining errors are evaluated quantitatively. The Mark III catalog, with ~3300 grouped galaxies, allows a reliable reconstruction with fixed Gaussian smoothing of 10-12 Mpc/h out to ~60 Mpc/h. We present maps of the 3D velocity and mass-density fields and the corresponding errors. The typical systematic and random errors in the density fluctuations inside 40 Mpc/h are \pm 0.13 and \pm 0.18. The recovered mass distribution resembles in its gross features the galaxy distribution in redshift surveys and the mass distribution in a similar POTENT analysis of a complementary velocity catalog (SFI), including the Great Attractor, Perseus-Pisces, and the void in between. The reconstruction inside ~40 Mpc/h is not affected much by a revised calibration of the distance indicators (VM2, tailored to match the velocities from the IRAS 1.2Jy redshift survey). The bulk velocity within the sphere of radius 50 Mpc/h about the Local Group is V_50=370 \pm 110 km/s (including systematic errors), and is shown to be mostly generated by external mass fluctuations. With the VM2 calibration, V_50 is reduced to 305 \pm 110 km/s.Comment: 60 pages, LaTeX, 3 tables and 27 figures incorporated (may print the most crucial figures only, by commenting out one line in the LaTex source

    Detection of Bulk Motions in the ICM of the Centaurus Cluster

    Get PDF
    Several recent numerical simulations of off-center cluster mergers predict that significant angular momentum with associated velocities of a few x 10^{3} km/s can be imparted to the resulting cluster. Such gas bulk velocities can be detected by the Doppler shift of X-ray spectral lines with ASCA spectrometers. Using two ASCA observations of the Centaurus cluster, we produced a velocity map for the gas in the cluster's central regions. We also detected radial and azimuthal gradients in temperature and metal abundance distributions, which seem to be associated with the infalling sub-group centered at NGC 4709 (Cen 45). More importantly, we found a significant (>99.8% confidence level) velocity gradient along a line near-perpendicular to the direction of the incoming sub-group and with a maximum velocity difference of ~3.4+-1.1 x 10^{3} km/s. It is unlikely (P < 0.002) that the observed velocity gradient is generated by gain fluctuations across the detectors. While the observed azimuthal temperature and abundance variations can be attributed to the interaction with Cen 45, we argue that the intracluster gas velocity gradient is more likely due to a previous off-center merging event in the main body of the Centaurus cluster.Comment: 13 pages in emulateapj5 style, 8 postscript figures; Accepted by ApJ; Revised version with minor change

    Address From Cork.

    Get PDF
    n/

    A Spectral Survey of the Crisium Basin Region of the Moon

    Get PDF
    The Crisium basin region harbors a number of interesting features, including geochemical and radar anomalies, light plains units and possible hidden mare deposits (cryptomaria). This report presents preliminary results of a telescopic near-infrared spectral study concerning a variety of surface units in the Crisium region. Observations were made of Mare Crisium, light plains deposits north of Taruntius crater, and the terra associated with the Crisium basin

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    Fracture toughness testing using photogrammetry and digital image correlation

    Get PDF
    Digital image correlation (DIC) is an optical technique commonly used for measuring displacement fields by tracking artificially applied random speckle patterns, which can sometimes be a problem for tracking small-scale displacements. DIC is particularly useful for tracking the crack mouth opening displacement (CMOD) of a notched metallic specimen subjected to three-point bending for fracture toughness determination because the edges of the notch provide the required textural features for DIC without the need for speckle patterns. This simplifies the set-up process as the specimen and stage geometries do not need to account for the placement of a strain gauge. To enhance the accuracy of DIC, this study then successfully downscaled a photogrammetry technique commonly used to track crack propagation in large scale concrete tests so that the pixel coordinates of the captured images can be automatically related to their real-world coordinates, allowing for small scale displacements to be accurately tracked.ARC Linkage Project LP130100111, ARC DECRA DE15010170
    • …
    corecore