582 research outputs found

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Immigrant community integration in world cities

    Full text link
    As a consequence of the accelerated globalization process, today major cities all over the world are characterized by an increasing multiculturalism. The integration of immigrant communities may be affected by social polarization and spatial segregation. How are these dynamics evolving over time? To what extent the different policies launched to tackle these problems are working? These are critical questions traditionally addressed by studies based on surveys and census data. Such sources are safe to avoid spurious biases, but the data collection becomes an intensive and rather expensive work. Here, we conduct a comprehensive study on immigrant integration in 53 world cities by introducing an innovative approach: an analysis of the spatio-temporal communication patterns of immigrant and local communities based on language detection in Twitter and on novel metrics of spatial integration. We quantify the "Power of Integration" of cities --their capacity to spatially integrate diverse cultures-- and characterize the relations between different cultures when acting as hosts or immigrants.Comment: 13 pages, 5 figures + Appendi

    Linkage mapping reveals sex-dimorphic map distances in a passerine bird

    Get PDF
    Linkage maps are lacking for many highly influential model organisms in evolutionary research, including all passerine birds. Consequently, their full potential as research models is severely hampered. Here, we provide a partial linkage map and give novel estimates of sex-specific recombination rates in a passerine bird, the great reed warbler (Acrocephalus arundinaceus). Linkage analysis of genotypic data at 51 autosomal microsatellites and seven markers on the Z-chromosome (one of the sex chromosomes) from an extended pedigree resulted in 12 linkage groups with 2–8 loci. A striking feature of the map was the pronounced sex-dimorphism: males had a substantially lower recombination rate than females, which resulted in a suppressed autosomal map in males (sum of linkage groups: 110.2cM) compared to females (237.2cM; female/male map ratio: 2.15). The sex-specific recombination rates will facilitate the building of a denser linkage map and cast light on hypotheses about sex-specific recombination rates

    Influence of Thermal Treatment on Electrical and Physical Properties of Coated Ceramics

    Get PDF
    Technical dielectric materials and ceramics are used in many different high technology industrial areas and especially for spacecraft applications. On satellites, these materials are subjected to extreme conditions due to the space plasma environment. To survive, these ceramic insulators must have exceptional electrical and thermal properties. Boron Nitride (BN) and Aluminum Oxide (Al 2O3) are used in particular because they combine good electrical insulation and high thermal conductivity. However, BN and Al2O3 used in spacecraft interiors are exposed to critical radiation demands, where these insulators are irradiated by electrons with high energies and flux. Charged particles are trapped in the ceramics, producing high electric fields. Subsequently, internal disturbances and electrical breakdowns can occur. Over time, these phenomena may cause degradation or failure of various components and embedded systems. Consequently, this study endeavors to understand the physical mechanisms which occur in these ceramics materials under electron irradiation. These dielectrics materials have been characterized at ONERA Toulouse (DESP) in the CEDRE (Chambre d’Etude De Revêtement Electrisés) irradiation chamber. A parametric study was performed to assess the influence of incident energy and flux, temperature, coating s, annealing, and ionizing dose on the charging and relaxation kinetics of BN and Al2O3. Surface and thermal treatments were found to limit BN’s charging. Dedicated treatments enhanced charge transport. To identify the effect of thermal annealing on electrical behavior in these materials, a thorough study of electron trapping processes was performed using cathodoluminescence in the Electron Emission Test facility at Utah State University. These tests explored differences in the nature and density of defect states. Together, these investigations determined correlations between chemical, structural and physical properties for each insulator’s configurations. Further, we observed degradation of coatings and an evolution of the concentration of their chemical defects. Contamination and ageing effects were identified on the rough material surfaces of ceramics exposed under a critical electron flux. Therefore, treatments applied to optimize electrical properties were found to be ineffective, especially for long-term charging mitigation. We will discuss these results and compare them for each ceramic configuration. The goal of this investigation is to understand the predominant physical mechanisms and main structural and chemical differences between these ceramic configurations in order to perform an exhaustive correlation between the properties. In future studies, we propose to define a defect-based model which can be used to optimize a material to limit both its charging and degradation over the time

    Creep via dynamical functional renormalization group

    Full text link
    We study a D-dimensional interface driven in a disordered medium. We derive finite temperature and velocity functional renormalization group (FRG) equations, valid in a 4-D expansion. These equations allow in principle for a complete study of the the velocity versus applied force characteristics. We focus here on the creep regime at finite temperature and small velocity. We show how our FRG approach gives the form of the v-f characteristics in this regime, and in particular the creep exponent, obtained previously only through phenomenological scaling arguments.Comment: 4 pages, 3 figures, RevTe

    Adaptive approximate Bayesian computation for complex models

    Full text link
    Approximate Bayesian computation (ABC) is a family of computational techniques in Bayesian statistics. These techniques allow to fi t a model to data without relying on the computation of the model likelihood. They instead require to simulate a large number of times the model to be fi tted. A number of re finements to the original rejection-based ABC scheme have been proposed, including the sequential improvement of posterior distributions. This technique allows to de- crease the number of model simulations required, but it still presents several shortcomings which are particu- larly problematic for costly to simulate complex models. We here provide a new algorithm to perform adaptive approximate Bayesian computation, which is shown to perform better on both a toy example and a complex social model.Comment: 14 pages, 5 figure

    Simulating temporal evolution of pressure in two-phase flow in porous media

    Get PDF
    We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip

    Modelling of the radiative properties of an opaque porous ceramic layer

    Get PDF
    Solid Oxide Fuel Cells (SOFCs) operate at temperatures above 1,100 K where radiation effects can be significant. Therefore, an accurate thermal model of an SOFC requires the inclusion of the contribution of thermal radiation. This implies that the thermal radiative properties of the oxide ceramics used in the design of SOFCs must be known. However, little information can be found in the literature concerning their operating temperatures. On the other hand, several types of ceramics with different chemical compositions and microstructures for designing efficient cells are now being tested. This is a situation where the use of a numerical tool making possible the prediction of the thermal radiative properties of SOFC materials, whatever their chemical composition and microstructure are, may be a decisive help. Using this method, first attempts to predict the radiative properties of a lanthanum nickelate porous layer deposited onto an yttria stabilized zirconium substrate can be reported

    Human mobility: Models and applications

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordRecent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.US Army Research Offic

    ESAT-6 Secretion-Independent Impact of ESX-1 Genes espF and espG1 on Virulence of Mycobacterium tuberculosis

    Get PDF
    Background. The pathogenesis of Mycobacterium tuberculosis largely depends on the secretion of the 6-kD early secreted antigenic target ESAT-6 (EsxA) and the 10-kD culture filtrate protein CFP-10 (EsxB) via the ESX-1/typeVII secretion system. Although gene products from the core RD1 region have been shown to be deeply implicated in this process, less is known about proteins encoded further upstream in the 5′ region of the ESX-1 cluster, such as the ESX-1 secretion-associated proteins (Esps) EspF or EspG1. Methods. To elucidate the role of EspF/G1, whose orthologs in Mycobacterium marinum and Mycobacterium smegmatis are reportedly involved in EsxA/B secretion, we constructed 3 M. tuberculosis knockout strains deleted for espF, espG1 or the segment corresponding to the combined RD1bcg-RD1mic region of bacille Calmette-Guérin (BCG) and Mycobacterium microti, which also contains espF and espG1. Results. Analysis of these strains revealed that, unlike observations with the model organisms M. smegmatis or M. marinum, disruption of espF and espG1 in M. tuberculosis did not impact the secretion and T cell recognition of EsxA/B but still caused severe attenuation. Conclusions. The separation of the 2 ESX-1-connected phenotypes (ie, EsxA/B secretion and virulence) indicates that EsxA/B secretion is not the only readout for a functional ESX-1 system and suggests that other processes involving EspF/G1 also play important roles in ESX-1-mediated pathogenicit
    • …
    corecore