Approximate Bayesian computation (ABC) is a family of computational
techniques in Bayesian statistics. These techniques allow to fi t a model to
data without relying on the computation of the model likelihood. They instead
require to simulate a large number of times the model to be fi tted. A number
of re finements to the original rejection-based ABC scheme have been proposed,
including the sequential improvement of posterior distributions. This technique
allows to de- crease the number of model simulations required, but it still
presents several shortcomings which are particu- larly problematic for costly
to simulate complex models. We here provide a new algorithm to perform adaptive
approximate Bayesian computation, which is shown to perform better on both a
toy example and a complex social model.Comment: 14 pages, 5 figure