
M A J O R A R T I C L E

ESAT-6 Secretion-Independent Impact of ESX-1
Genes espF and espG1 on Virulence of
Mycobacterium tuberculosis

Daria Bottai,1,7 Laleh Majlessi,2,5 Roxane Simeone,1 Wafa Frigui,1 Christine Laurent,3,6 Pascal Lenormand,3,6

Jeffrey Chen,8 Ida Rosenkrands,9 Michel Huerre,4 Claude Leclerc,2,5 Stewart T. Cole,8 and Roland Brosch1
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Background. The pathogenesis ofMycobacterium tuberculosis largely depends on the secretion of the 6-kD early

secreted antigenic target ESAT-6 (EsxA) and the 10-kD culture filtrate protein CFP-10 (EsxB) via the ESX-1/typeVII

secretion system. Although gene products from the core RD1 region have been shown to be deeply implicated in this

process, less is known about proteins encoded further upstream in the 5# region of the ESX-1 cluster, such as the

ESX-1 secretion–associated proteins (Esps) EspF or EspG1.

Methods. To elucidate the role of EspF/G1, whose orthologs in Mycobacterium marinum and Mycobacterium

smegmatis are reportedly involved in EsxA/B secretion, we constructed 3M. tuberculosis knockout strains deleted for

espF, espG1 or the segment corresponding to the combined RD1bcg-RD1mic region of bacille Calmette-Guérin (BCG)

and Mycobacterium microti, which also contains espF and espG1.

Results. Analysis of these strains revealed that, unlike observations with the model organisms M. smegmatis or

M. marinum, disruption of espF and espG1 in M. tuberculosis did not impact the secretion and T cell recognition of

EsxA/B but still caused severe attenuation.

Conclusions. The separation of the 2 ESX-1–connected phenotypes (ie, EsxA/B secretion and virulence)

indicates that EsxA/B secretion is not the only readout for a functional ESX-1 system and suggests that other

processes involving EspF/G1 also play important roles in ESX-1–mediated pathogenicity.

Full virulence ofMycobacterium tuberculosis relies on the

secretion of the 6-kD early secreted antigenic target

ESAT-6 (EsxA) and its protein partner, the 10-kD cul-

ture filtrate protein CFP-10 (EsxB) via the ESX-1/type

VII secretion system [1, 2], which is encoded in the ESX-

1 genomic locus close to the origin of replication [3].

Partially overlapping sections of this ESX-1 cluster are

missing from the genomes of the attenuated tubercle

bacilli Mycobacterium bovis bacille Calmette-Guérin

(BCG) and the vole bacillusMycobacterium microti, due

to independent deletion events that resulted in the loss

of the region of difference 1 (RD1bcg) [4] and RD1mic

[5], respectively. The study of RD1 genes in an M. tu-

berculosis genetic background has been enabled by the

construction of an M. tuberculosis D RD1 strain

(MtbDRD1) that lacks the same 9.5-kb region as BCG. It

was found that MtbDRD1 mutants were attenuated in

mice [6, 7], although in long-term infection studies,

MtbDRD1 was more virulent than BCG [8], which

harbors additional attenuating mutations [9].

MtbDRD1 was also useful for complementation studies

identifying residues in EsxA required for the full viru-

lence of M. tuberculosis [10].
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However, MtbDRD1 is not suitable for the study of the ge-

nomic locus rv3865-66 from the 5# region of the ESX-1 cluster

that encodes genes espF and espG1 [11] and seems to be required

for increased virulence ofM. microti::RD1 strains [12]. In order

to characterize espF and espG1 in an authentic M. tuberculosis

genetic background, we constructed 3M. tuberculosismutants in

which either espF, or espG1 was inactivated or from which a large

segment, corresponding to the RD1mic and RD1bcg regions, was

deleted. To establish the impact of espF and espG1 in the func-

tion of the ESX-1 system, these knockoutM. tuberculosis strains

and their complemented derivatives were tested in various in

vitro, ex vivo, and in vivo systems with particular emphasis on

EsxA secretion and virulence.

MATERIALS AND METHODS

Plasmids, Bacterial Strains, Knockout Mutants and
Complemented Strains
For the construction of knockout strains and complemented

variants, we used plasmid pPR27 [13] and integrating vector

pRBexint [14], respectively. For cloning procedures and plasmid

amplification, Escherichia coli DH10B (Invitrogen) was used,

whereas all mycobacterial knockout mutants were based on M.

tuberculosis H37Rv [3, 14].

M. tuberculosis knockout mutants were constructed by allelic

exchange using the Ts/sacB method [13]. Polymerase chain

reaction (PCR) amplicons of genes and flanking regions

(Table S1) and/or the kanamycin cassette were digested with

appropriate endonucleases and cloned into BamHI-NotI–

digested pPR27. The resulting constructs, pPR-espF::Km,

pPR-espG1::Km, and pPR-DD::Km, were sequenced and used for

allelic replacement as described elsewhere [13]. For comple-

mentation, espF, espG1, or espF-espH fragments were cloned into

pRBexint under the dnaK promoter [14]. Resulting plasmids

pExint-espF, pExint-espG1, and/or pExint-espF-espH were

electroporated into mutants and transformants selected after

4 weeks.

RNA-Extraction, 5#-RACE, DNA-Extraction and Southern
Analysis
RNA was extracted from bacteria in exponential-phase growth

as described elsewhere [12] and used for rapid amplification of

cDNA ends (RACE) and reverse-transcription PCR (Table S1),

in accordance with the manufacturer’s instructions (Roche).

Mycobacterial genomic DNA was extracted using standard

protocols [5, 15]. To confirm allelic exchange, genomic DNAs

from MtbDespF, MtbDespG1, or MtbDDRD1 were cleaved with

PvuII orAflII and subjected to gel electrophoresis (MtbDespF and
MtbDespG1) or pulsed-field gel-electrophoresis (MtbDDRD1).
DNAs were blotted to Hybond-C nitrocellulose and hybridized

with 32P-labeled PCR fragments (Table S1) [5].

Recombinant Protein Purification and Production of EspF/EspG1
Antisera
The espF and espG1 coding sequenced were PCR amplified and

cloned into pIVEX vectors (Roche). Recombinant EspF-6His

and EspG1-6His were expressed in E.coli BL21 and purified

using Ni21-NTA affinity colums. Purified proteins were used

for animal immunization. Similarly, the C-terminal part of EspA

was expressed, purified, and used for raising polyclonal anti-

bodies.

Sample Preparation, Immunoblotting and 2D Electrophoresis
Preparation of mycobacterial protein extracts was performed as

described elsewhere [12]. Immunoblotting was performed with

mouse anti-EsxA (Hyb 76-8; Antibodyshop), mouse anti-

GroEL2 monoclonal antibody (CSU), rat anti-EspG1-, or rabbit

anti-PPE68 serum.

For 2D electrophoresis, culture filtrates from M. tuberculosis

strains were concentrated in presence of ethylenediaminetetra-

acetic acid free protease inhibitor (Roche). Proteins were de-

salted and concentrated using the ReadyPrep 2-D Cleanup kit

(BIO-RAD) and resuspended in 2D buffer (urea, 7M; thio urea,

2M; 4% CHAPS;, 2% Triton X-100; 50 mM of DTT; pH4-7

ampholytes (2%). 2D gel electrophoresis was performed using

pH 4–7–immobilized gradient strips for the first dimension and

15% sodium dodecyl sulfate– polyacrylamide gel electrophoresis

(SDS-PAGE) for separation in the second dimension. Selected

spots, such as EsxA/B, were confirmed by mass spectrometry.

Splenocyte T cell Response Assays
C57BL/6 (H-2b) mice were injected subcutaneously with 106

colony-forming units (CFU) of H37Rv wild-type (WT) or

mutants as described elsewhere [16, 17]. Two weeks after im-

munization, splenocytes were cultured (106 cells/well) for 72 h

together with recombinant proteins/peptides, followed by

quantification of the interferon (IFN)–c level in culture super-

natants using a sandwich enzyme-linked immunosorbent assay

with AN-18 and biotin-conjugated R4-6A2 monoclonal anti-

bodies.

Ex vivo Virulence Analysis
Bone marrow–derived macrophages (BMDMs) and alveolar

epithelial A549 cells were obtained, cultured, and infected as

described elsewhere [12]. BMDMs and A549 cells were put in

contact with bacterial suspensions at a multiplicity of infection

of 1:1. At 4 h and at 4 and 7 days after infection, cells were lysed

using .1% Triton X-100 in PBS and the number of intracellular

bacteria was determined by plating serial dilutions of cell lysates.

In vivo Virulence Analysis
Six-week-old C57BL/6 (H-2b) mice (Charles River) were in-

fected via the aerosol route, as described elsewhere [12], using

a suspension containing 5 3 106 CFU/mL to obtain an inhaled

dose of �100 CFU/lungs. Mice were killed 15 or 30 days after

infection. Lungs and spleens were recovered and used for
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determination of CFU counts and for histological examination,

as described elsewhere [12, 17]. Experiments were undertaken in

accordance with approved ethics guidelines, protocol No. 03-

129.

RESULTS

Genetic Characterization, Inactivation and Complementation of
the espF/espG1 Locus in M. tuberculosis.
The genes espF and espG1 are situated in the 5# region of the

ESX-1 locus (Figure 1A). Analysis of the transcripts by RT-PCR

using different combinations of primers specific for espF and

espG1 or their flanking genes showed that the 2 genes were co-

transcribed and formed a transcriptional unit independent from

the upstream gene espE and the downstream gene espH

(Figure 1D). These results were confirmed by mapping the 5#

ends of transcripts using 5# RACE, which identified independent

espE- and espF-specific transcripts, starting 61 and 19 bases

upstream of the start codons, respectively (Figures 1E–F).

To investigate the implication of espF and espG1 in the ESX-1

secretion system, we constructed individual M. tuberculosis KO

mutants (Figure 1B) that were complemented using integrating

plasmids pExint-espF, pExint-espG1, or pExint-espF-espH.

Quantitative RT-PCR (qRT-PCR) revealed that expression of

espH was similar to WT in both KO mutants (Figure 1G),

confirming the transcriptional separation of espH from espF/G1.

Furthermore, qRT-PCR identified potential polar effects caused

by the disruption of espF on espG1 expression. Indeed, the level

of expression of espG1 in MtbDespF was very low and remained

low even after complementation with pExint-espF, wherein espF

is under the control of the dnaK promoter. Higher levels of

expression of espG1 in the MtbDespF genetic background were

only obtained by complementation with pExint-espF-espH that

included espF and espG1, as well as the unrelated espH gene

(Figure 1G). Thus, only mutants complemented with the latter

construct were used for subsequent studies.

To characterize the 5# region of the ESX-1 locus, we con-

structed an M. tuberculosis ESX-1 deletion strain lacking a ge-

nomic segment of almost 20 kb, corresponding to the RD1

regions absent from M. microti (RD1mic) and BCG (RD1bcg),

which was named MtbDDRD1 to reflect the absence of the 2

overlapping RD1 regions. This deletionmutant lacked the 5’ and

the core regions encoding the ESX-1 system (Figure 1). Com-

plementation of MtbDDRD1 was obtained with the cosmid

pRD1-2F9 that was previously used to functionally complement

BCG and M. microti [16, 18].

Inactivation of espF or espG1 Does Not Inhibit Secretion of
ESX-1 Proteins in M. tuberculosis.
The ESX-1 locus of M. tuberculosis is highly conserved in

Mycobacterium marinum and Mycobacterium smegmatis in

gene content and gene order [19, 20]. Because previous

reports suggested that espF and espG1 orthologs in M. mar-

inum and M. smegmatis were involved in EsxA secretion [21,

22], it was of special interest to investigate whether M. tu-

berculosis espF and espG1 KO mutants displayed a defect in

ESX-1–related secretion.

EsxA was detected in the culture filtrates of MtbDespF,
MtbDespG1 and theWT control, whereas no EsxAwas detected for

MtbDDRD1 (Figure 2A). Lysis controls using antibodies against

GroEL2 or PPE68 indicated that the samples were not contami-

nated with cytosolic or membrane-associated proteins. Together,

these results strongly suggest that, in M. tuberculosis, the in-

activation of espF or espG1 does not inhibit the secretion of EsxA.

Because secretion of EspA (Rv3616c) was reported to be EsxA

dependent [23], the presence of EspA in the supernatants of

the mutants was tested using antibodies raised against the C-

terminal part of EspA. A weak but specific band of 40 kD was

detected in the supernatants of MtbDespF, MtbDespG1, and

complemented strains. Although more EspA was observed for

the WT, the finding that complemention of the mutants did not

increase the amount of EspA suggests that espF and espG1 are

not directly involved in this process.

We also tested polyclonal anti-EspF and anti-EspG1 anti-

bodies. For EspF, no specific protein detection was observed

among the WT and mutants under the conditions used (data

not shown), although qRT-PCR results suggested expression of

espF (Figure 1G). In contrast, anti-EspG1 antibodies revealed

a specific band of 30 kD in WT and complemented strains that

was absent from the KO mutants (Figure 2A and 2C). Although

the absence of EspG1 from both KO mutants confirms the

aforementioned transcriptional link between espF and espG1, the

localization of EspG1 in the membrane and cell-wall fractions,

together with the absence from culture filtrate, indicates that

EspG1 is a component of the mycobacterial cell envelope.

Whereas topology analysis using MEMSAT3 [24] did

not identify a signal peptide in EspG1, a potential trans-

membrane helix is predicted at lower confidence scores (data

not shown).

Finally, screening of total lysates from KO mutants with anti-

PPE68 antibodies revealed the presence of this RD1-encoded

PPE protein in preparations of all strains except MtbDDRD1
(Figure 2A). However, more detailed analysis showed that the

amounts of PPE68 in the cell envelope preparations from

MtbDespF and MtbDespG1 were repeatedly lower than those

detected in the complemented and the WT strains, suggesting

a functional link between the espF/espG1 locus and ppe68 gene

expression or PPE68 protein stability (Figure 2C).

Posttranslational Modification of EsxA is Unaffected in espF
and espG1 Mutant Strains
Previous studies using 2D gels of culture filtrate proteins of

M. tuberculosis suggested that EsxA is present in these prepara-

tions in different forms that carry posttranslational modifications,
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such as acetylation of the N-terminal threonine residue [25].

Thus, we tested whether inactivation of EspF and/or EspG1 had

any visible effect on 2D electrophoresis patterns of EsxA, but no

differences between the WT and the 2 deletion mutants were

found (Figure 2D). As expected, no EsxA/B was detected in the

culture filtrate of MtbDDRD1.

Figure 1. Characterization ofMycobacterium tuberculosis mutants. A, Genomic organization of RD1mic-RD1bcg region inM. tuberculosis H37Rv and KO
strains. Arrows, primers used for construction of mutants. B, Southern blot analysis of genomic DNA from MtbDespF, MtbDespG1 and M. tuberculosis
H37Rv WT digested by PvuII and probed with an espF- or espG1-specific probe. C, Pulsed-field gel electrophoresis (Ramp, 1–18 s; 22 h at 6 V/cm) and
Southern blot of AflII-digested genomic DNA fromMtbDDRD1 and WT strains probed with an espL-specific probe. Note that the deletion of the RD1mic–
RD1bcg region is accompanied with the loss of an AflII restriction site, resulting in an espL-containing hybridization fragment that is larger than that
obtained from the WT strain. D, Analysis of the M. tuberculosis espF–espG1 locus by reverse-transcription polymerase chain reaction (RT-PCR) of RNA
from M. tuberculosis H37Rv using various combinations of primers specific for espF, espG1, and their flanking genes. E and F, DNA sequences of the
regions upstream of the espE (E) and espF (F) genes. 5# ends of transcripts, mapped by 5#RACE, are indicated by arrows. Translational start sites are in
boldface font. G, Expression levels of the genes espF, espG1, and espH in cultures of MtbDespF, MtbDespG1, and corresponding complemented strains
evaluated by quantitative RT-PCR. The expression level of each gene in each strain is reported as the ratio between the mutant and M. tuberculosis
H37Rv WT, used as reference. For each strain, values were normalized to the level of 16S rRNA expression, which exists as a single copy in
M. tuberculosis. Primer and probe sequences of genes espF, espG1, espH, and 16S rRNA are listed in Table S1. Km, kanamycin resistance gene.
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Figure 2. In vitro expression and secretion of ESX-1 proteins in MtbDespF, MtbDespG1, and MtbDDRD1 strains. Culture filtrates (CFs) were obtained
as supernatants of bacterial cultures grown in Sauton medium for 4–6 days, recovered by centrifugation, and concentrated using filters with a 3-kD
cutoff. Total lysates (TLs) were obtained by shaking bacterial pellets with 106-lm acid-washed glass beads and centrifugation at 2300 3 g for 30 min.
Cell wall (CW), cytosolic (C) membrane (ME) fractions were prepared from total lysates by 45-min centrifugation at 17,500 3 g (CW), followed by
ultracentrifugation at 3,50,000 3 g rpm for 90 min (C and ME). Protein concentrations were determined and normalized using a BioRad protein assay
before sodium-dodecyl-sulfate-polyacrylamide gel-electrophoresis (SDS - PAGE). A, Fifteen micrograms of CF or TL were subjected to SDS - PAGE and
tested by Western blotting using monoclonal anti-EsxA antibodies Hyb 76-8a, anti-EspG1 rat polyclonal serum, polyclonal rabbit anti-EspA, or anti-PPE68
serum. Mouse anti-GroEL2 antibodies were used for lysis controls. B, Immunoblot showing bands in the size range of 40 kD obtained from CF proteins
using anti-EspA antibodies. C, Forty micrograms of C, ME, and CW fractions from MtbDespF, MtbDespG1 and their complemented variants as well as
fromM. tuberculosis H37Rv WTwere tested by Western blotting with anti-EspG1 rat polyclonal serum, anti-PPE68 rabbit polyclonal serum, or anti-GroEL2
antibodies. Note that the presence of various bands with slightly different molecular weight for GroEL2 might have been enhanced by the additional
centrifugation steps used for preparing the subcellular fractions. D, Two-dimensional analysis of CF from MtbDespF, MtbDespG1, MtbDDRD1, and M.
tuberculosis H37Rv WT focused on EsxA/B spots. Eighty-five micrograms of CF proteins were separated by isofocusing using a pH 4–7 gradient and 15%
SDS - PAGE, in the first and second dimension, respectively. Protein detection was performed by silver staining. EsxA and EsxB spots are indicated by
arrows and circles, respectively. For simplicity, only the regions of the gels containing EsxA and EsxB spots are shown.

EspF/G1 Virulence Factors d JID 2010: (15 April) d 1159



Immune Recognition of EsxA Is Not Affected by espF/espG1

Disruption
The ability to stimulate EsxA/B-specific T cells in mice requires

secretion of these antigens [26, 27]. When MtbDespF,
MtbDespG1, and WT strains were tested for their potential to

induce specific T cell responses against ESX-1 antigens, all 3

strains induced high and comparable amounts of IFN-c pro-

duction after stimulation with EsxA or EsxB (Figure 3). To-

gether with the finding that all strains induced IFN-c production
in response to purified protein derivative but not the Mal-E

controls, the results validate the ability of MtbDespF and

MtbDespG1 to secrete EsxA/B under in vivo conditions.

Virulence Determination of Strains
As part of an initial virulence test, MtbDespF, MtbDespG1, or

MtbDDRD1 mutants were subjected to ex vivo growth analysis

in BMDMs and in a A549 type II pneumocytic cell line.

MtbDespF and MtbDespG1 mutants were engulfed by both cell

types equally well as the control (Figure 4A). However, both

mutants showed reduced growth in BMDMs (Figure 4B),

whereas the growth characteristics in pneumocytes were similar

to those in the WT control (Figure 4C). The most severe at-

tenuation was observed forMtbDDRD1, which was engulfed less
efficiently than the control and which also showed significant

growth attenuation in both cell types (Figure 4B and 4C).

The impact of espF and espG1 inactivation on virulence was

then assessed by comparing the behavior of MtbDespF,
MtbDespG1, and MtbDDRD1 in aerosol-infected mice. Whereas

the WT control replicated extensively in the organs, MtbDespF

and MtbDespG1 showed attenuated phenotypes. At day 30 after

infection, a 3- and 2-log10 difference was observed in the number

of CFU recovered from the lungs and spleen of mice infected with

MtbDespG1, compared with the WT control. Similarly, for

MtbDespF, a 4- and 3-log10 reduction in the number of CFU

recovered from the lungs and spleen, respectively, was observed

(Figure 5A and 5B). The attenuation of the mutants was also

confirmed by histological analyses, which identified no (or only

minimal) lesions in sections of lungs from mice infected with

MtbDespF and MtbDespG1, whereas multiple and extended

granulomas were detected in lungs from WT-infected mice

(Figure 6). Complementation of MtbDespF and MtbDespG1 with

the espF–espH region increased the virulence of the strains, al-

though it did not restore the virulence to the level of the WT

(Figure 5A and 5B).

In good agreement with results from the infection of mac-

rophages and pneumocytes, MtbDDRD1 was most strongly at-

tenuated also in the mouse infection model. Deletion of almost

all ESX-1 genes resulted in a 4-log10 reduction of the number of

CFU recovered from lungs, compared with for the control, 30

days after infection and in no colonies recovered from the spleen

(Figure 5B). Furthermore, histological analysis of lung sections

revealed predominantly normal lung tissue, with no granuloma

or lesions (Figure 6), thus confirming the strong attenuation of

MtbDDRD1.
These results prompted us to evaluate the virulence of

MtbDDRD1 compared with that ofMtbDRD1, which lacks only

the RD1 core region [6], and with that of BCG. As depicted in

Figure 5C–5D, in this final virulence test, MtbDDRD1 again

Figure 3. EsxA- and EsxB-specific T cell responses induced by MtbDespF and MtbDespG1 strains 2 weeks after mouse immunization. Splenocytes
were cultured for 72 h with 4 lg/mL recombinant EsxA or EsxB or with 1 lg/mL EsxA:1–20 synthetic peptide. As positive and negative controls,
interferon-c production was also evaluated in response to 5 lg/mL purified-protein derivative (PPD) and to recombinant Mal-E protein or MalE:100-114
peptide. The data are representative of 2 independent experiments.
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showed very limited in vivo growth, with lower CFU counts in

lungs and spleens than MtbDRD1. It is noteworthy that the

MtbDDRD1, unlike MtbDRD1, scarcely disseminated to the

spleen (Figure 5D). These findings, which confirm and extend

observations described for BCG andMtbDRD1 [8], suggest that
the level of attenuation resulting from the deletion of the RD1

core region can still be enhanced by additional mutations that

affect the in vivo growth of tubercle bacilli [9, 28]. Simultaneous

deletion of the genes located in the 5# end of the ESX-1 cluster in

addition to the RD1 core region thus represents a novel com-

bination resulting in profound attenuation of M. tuberculosis.

DISCUSSION

It is well known that several proteins of the ESX-1 secretion

system encoded in the 9.5-kb RD1 core region, which is present

in M. tuberculosis but absent from the attenuated BCG vaccine

strain, play important roles in mycobacterial virulence [6, 7, 18,

29, 30]. In contrast, much less information is available on the

genes situated further upstream in the extended RD1 region of

M. tuberculosis. Thus, in this study, we focused on 2 genes,

recently named espF and espG1 [11], that are both encoded in the

extended RD1 region of M. tuberculosis and for which pre-

liminary M. microti-derived data suggested a potential in-

volvement in virulence [12]. To experimentally address this

issue, it was of utmost importance to construct individual

M. tuberculosis KO mutants of genes espF and espG1, re-

spectively, as well as aM. tuberculosis deletion mutant that lacks

a 20-kb genomic segment spanning the genes upstream of the

RD1 region in addition to the core RD1 locus. These mutants

were not only of key importance for the present study but also

represent excellent tools for further in-depth studies of the

ESX-1 secretion apparatus of M. tuberculosis.

We show here that espF and espG1 from M. tuberculosis form

an operon that is transcribed independently from the neigh-

boring genes espE and espH. Such a genomic organization is in

agreement with the downstream effects on gene expression for

espG1, which were initially observed in qRT-PCR analyses on

attempting to complement the MtbDespF mutant with an espF-

expressing plasmid and which prompted us to complement the

mutants with a plasmid including espG1 in addition to espF.

With use of antibodies against EspF, no specific protein de-

tection was observed, possibly because of low stability of EspF

under the conditions in the study. EspF was previously identified

in proteomic studies as a secreted protein ofM. tuberculosis [31]

and, more recently, as an ESX-1–dependent secreted protein in

M. marinum [32]. However, in the same study, only very small

amounts of EspF were identified forM. tuberculosis. This finding

is in agreement with our data and suggests that the expression

kinetics, stability, and/or function of EspF may not be the same

for different mycobacterial species in spite of the primary se-

quence similarities.

A comparable situation is observed for EspG1. Different re-

search groups working on the ESX-1 system ofM.marinum and/

or M. smegmatis have reported that EspG1Mm transposon or

EspG1Ms KO mutants showed a defect in EsxA/B secretion [21,

33]. Conversely, in M. tuberculosis, we find that inactivation of

EspG1Mt has no obvious effect on secretion of EsxA. As shown in

the numerous SDS-PAGE experiments performed during this

study, the supernatants fromMtbDespF andMtbDespG1mutants

always contained large amounts of EsxA and exhibited a very

similar 2D profile to WT M. tuberculosis. These findings indeed

suggest that, in M. tuberculosis, EspF and EspG1 are not directly

involved in EsxA secretion or posttranslational modifications of

Figure 4. Intracellular growth of MtbDespF, MtbDespG1 ,and
MtbDDRD1 strains in bone marrow–derived macrophages (BMDMs)
and A549 cells. A, Quantification of bacterial uptake 4 h after infection of
murine macrophages (n) and A549 cells (h) withMtbDespF,MtbDespG1,
and MtbDDRD1 strains using a multiplicity of infection (MOI) of 1:1
(bacteria:cell). B and C, Colony-forming unit (CFU) ratio values (number of
CFUs at days 4 and 7 relative to the number of CFUs at 4 h) in BMDMs (B)
and A549 cells (C). The figures show the means and the standard
deviations of percentages of uptake or CFU ratio values obtained in 3
independent experiments, each performed in quadruplicate. The
significant difference in percentages of uptake or CFU ratio values
between H37Rv and the mutant strains (MtbDespF, MtbDespG1 ,and
MtbDDRD1) were determined by analysis of variance (one-way ANOVA
test), followed by Bonferroni means comparison test. *P, .05. **P, .01.
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EsxA. This is further confirmed by the fact that the EspF and

EspG1 mutants also induced strong EsxA/B-specific T cell re-

sponses in an antigen-specific IFN-c secretion assay, repre-

senting a sensitive and reliable readout system of EsxA secretion

inM. tuberculosis [26, 27]. We cannot yet exclude the possibility

that there is a potential overlap of function between EspF and

the chromosomally unlinked ESX-1 protein EspC (Rv3615c;

67% amino acid similarity as determined by FASTA alignement)

that might contribute to the continued EsxA secretion in the

MtbDespF mutant. However, even if that were the case, such an

effect does not alleviate the attenuation of the mutant.

From these data, we can conclude that the attenuation of the

M. tuberculosis EspF and EspG1 mutants is not caused by the lack

of EsxA secretion but, rather, by the interruption of another, yet-

unknown function of the ESX-1 system. One of the apparent

possibilities might relate to the interaction of EspF and/or EspG1

with other proteins. It was, for example, reported that EspF shows

protein-protein interaction with the AAA1 ATPase EccA1 [32],

although the biological consequences of this interaction are not

known. For EspG1 a strong and specific interaction with the

PPE68 protein of the ESX-1 system was reported elsewhere [34].

This finding is in agreement with the observation that EspF and

EspG1 mutants show substantially lower amounts of PPE68 in

their cell lysates (Figure 2C). However, the role of PPE68 in the

ESX-1 system remains unclear. Although ppe68 (rv3873) was listed

among the genes that were required for full virulence of

M. tuberculosis revealed by a genome-wide transposon site

hybridization screen [35], interruption or truncation of the

C-terminal part of the PPE68 protein did not result in the at-

tenuation of the recombinant strains [12, 36]. Future studies

involving unmarked ppe68 KO strains may elucidate this aspect.

Finally, it might be argued that the reason for EspF and EspG1

not being implicated in the secretion of EsxA/B in M. tubercu-

losis is that EspF and EspG1 were simply not part of the ESX-1

system. Although we cannot exclude with certainty such a sce-

nario, several points suggest that EspF and EspG1 do play a role

Figure 5. Analysis of the virulence of different strains in an aerosol infection model using C57BL/6 mice. The number of colony-forming units (CFUs) of
MtbDespF,MtbDespG1,MtbDDRD1 or their complemented derivatives, as well as of wild-type (WT)Mycobacterium tuberculosis H37Rv in the lungs (A)
and spleens (B) of C57BL/6 mice 15 and 30 days after infection, compared with the number of CFUs in lungs at day 0. The figure shows the means and
standard deviations of CFU values obtained in 2 independent experiments, each performed with 4–5 mice per group. The CFU values are also shown for
bacille Calmette-Guérin (BCG), MtbDRD1, MtbDDRD1, and WT M. tuberculosis H37Rv strains in the lungs (C) and spleens (D) of C57BL/6 mice 30 days
after infection, compared with the CFU values in lungs at day 0.
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in the ESX-1 systems of M. tuberculosis. First, by looking at the

genome arrangement, espF and espG1 are clearly located within

the ESX-1 cluster. EspF is also 67% similar to EspC, which is

functionally linked with ESX-1 [37]. Furthermore, M. tubercu-

losis contains a total of 5 ESX/type VII systems [2, 3, 19, 38–40]

that, apart from ESX-conserved components PE/PPE- and Esx-

proteins [11], also contain ESX-associated proteins, such as the

ESX-1 secretion-associated proteins Esps [11, 23, 37]. EspG1

belongs to the latter group, but in contrast to other Esp proteins

that share no homologues in the M. tuberculosis genome, related

EspG2/G3 proteins are present in ESX-2 and ESX-3 systems [11].

Because ESX clusters are considered to have evolved by dupli-

cation and subsequent diversification [19], the presence of espG

genes in different ESX loci suggests that EspG variants were al-

ready part of ESX clusters in earlier steps of mycobacterial evo-

lution, further underlining the close link between espG1 and the

ESX-1 system. The separation of the 2 ESX-1–related phenotypes

(EsxA/B secretion and virulence) reported here thus strongly

suggests that EsxA/B secretion is not the only essential function of

the ESX-1 system contributing to host-pathogen interaction.

These insights are of central interest for the elucidation of the

function of the ESX-1 system ofM. tuberculosis and suggest that,

despite the similar genetic organization of ESX-1 loci in various

mycobacterial species, substantial differences in the secretion ma-

chinery might exist that have evolved during the adaptation of

different mycobacterial species to their respective ecological niches.
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.org/our_journals/jid/online.
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