10,419 research outputs found
A figure-of-merit approach to extraterrestrial resource utilization
A concept is developed for interrelated optimizations in space missions that utilize extraterrestrial resources. It is shown that isolated (component) optimizations may not result in the best mission. It is shown that substantial benefits can be had through less than the best propellants, propellant combinations, propulsion hardware, and actually, some waste in the traditional sense. One ready example is the possibility of discarding hydrogen produced extraterrestrially by water splitting and using only the oxygen to burn storable fuels. The gains in refrigeration and leak-proof equipment mass (elimination) outweigh the loss in specific impulse. After a brief discussion of this concept, the synthesis of the four major components of any future space mission is developed. The four components are: orbital mechanics of the transportation; performance of the rocket motor; support systems that include power; thermal and process controls, and instruments; and in situ resource utilization plant equipment. This paper's main aim is to develop the concept of a figure-of-merit for the mission. The Mars Sample Return Mission is used to illustrate the new concept. At this time, a popular spreadsheet is used to quantitatively indicate the interdependent nature of the mission optimization. Future prospects are outlined that promise great economy through extraterrestrial resource utilization and a technique for quickly evaluating the same
Interdependent figure-of-merit software development
This program was undertaken in order to understand the complex nature of interdependent performance in space missions. At the first step in a planned sequence of progress, a spread sheet program was developed to evaluate different fuel/oxidizer combinations for a specific Martian mission. This program is to be linked with output attained using sophisticated software produced by Gordon and McBride. The programming to date makes use of 11 independent parameters. Optimization is essential when faced with the incredible magnitude of costs, risks, and benefits involved with space exploration. A system of weights needs to be devised on which to measure the options. It was the goal to devise a Figure of Merit (FoM) on which different choices can be presented and made. The plan was to model typical missions to Mars, identify the parameters, and vary them until the best one is found. Initially, most of the focus was placed on propellant selection
Composite Crew Module (CCM) Permeability Characterization
In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment
Plants use identical inhibitors to protect their cell wall pectin against microbes and insects
Lifshitz Tails in Constant Magnetic Fields
We consider the 2D Landau Hamiltonian perturbed by a random alloy-type
potential, and investigate the Lifshitz tails, i.e. the asymptotic behavior of
the corresponding integrated density of states (IDS) near the edges in the
spectrum of . If a given edge coincides with a Landau level, we obtain
different asymptotic formulae for power-like, exponential sub-Gaussian, and
super-Gaussian decay of the one-site potential. If the edge is away from the
Landau levels, we impose a rational-flux assumption on the magnetic field,
consider compactly supported one-site potentials, and formulate a theorem which
is analogous to a result obtained in the case of a vanishing magnetic field
Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr
Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. <br><br> Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. <br><br> The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. <br><br> We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources
The weak localization for the alloy-type Anderson model on a cubic lattice
We consider alloy type random Schr\"odinger operators on a cubic lattice
whose randomness is generated by the sign-indefinite single-site potential. We
derive Anderson localization for this class of models in the Lifshitz tails
regime, i.e. when the coupling parameter is small, for the energies
.Comment: 45 pages, 2 figures. To appear in J. Stat. Phy
Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum
Statistical -decay from highly excited states is determined by the
nuclear level density (NLD) and the -ray strength function
(SF). These average quantities have been measured for several nuclei
using the Oslo method. For the first time, we exploit the NLD and SF to
evaluate the -width in the energy region below the neutron binding
energy, often called the quasi-continuum region. The lifetimes of states in the
quasi-continuum are important benchmarks for a theoretical description of
nuclear structure and dynamics at high temperature. The lifetimes may also have
impact on reaction rates for the rapid neutron-capture process, now
demonstrated to take place in neutron star mergers.Comment: CGS16, Shanghai 2017, Proceedings, 5 pages, 3 figure
Low lying spectrum of weak-disorder quantum waveguides
We study the low-lying spectrum of the Dirichlet Laplace operator on a
randomly wiggled strip. More precisely, our results are formulated in terms of
the eigenvalues of finite segment approximations of the infinite waveguide.
Under appropriate weak-disorder assumptions we obtain deterministic and
probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas
argument allows us to obtain so-called 'initial length scale decay estimates'
at they are used in the proof of spectral localization using the multiscale
analysis.Comment: Accepted for publication in Journal of Statistical Physics
http://www.springerlink.com/content/0022-471
- …
