We study the low-lying spectrum of the Dirichlet Laplace operator on a
randomly wiggled strip. More precisely, our results are formulated in terms of
the eigenvalues of finite segment approximations of the infinite waveguide.
Under appropriate weak-disorder assumptions we obtain deterministic and
probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas
argument allows us to obtain so-called 'initial length scale decay estimates'
at they are used in the proof of spectral localization using the multiscale
analysis.Comment: Accepted for publication in Journal of Statistical Physics
http://www.springerlink.com/content/0022-471