Abstract

We study the low-lying spectrum of the Dirichlet Laplace operator on a randomly wiggled strip. More precisely, our results are formulated in terms of the eigenvalues of finite segment approximations of the infinite waveguide. Under appropriate weak-disorder assumptions we obtain deterministic and probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas argument allows us to obtain so-called 'initial length scale decay estimates' at they are used in the proof of spectral localization using the multiscale analysis.Comment: Accepted for publication in Journal of Statistical Physics http://www.springerlink.com/content/0022-471

    Similar works

    Full text

    thumbnail-image

    Available Versions