26 research outputs found

    Surface Plasmon Resonance Reveals a Different Pattern of Proinsulin Autoantibodies Concentration and Affinity in Diabetic Patients

    Get PDF
    Type 1 diabetes mellitus (DM) is characterized by autoimmune aggression against pancreatic beta cells resulting in absolute deficiency of insulin secretion. The first detectable sign of emerging autoimmunity during the preclinical asymptomatic period is the appearance of diabetes-related autoantibodies. In children at risk for type 1 DM, high-affinity Insulin autoantibodies reactive to proinsulin, are associated with diabetes risk. Autoantibodies are usually measured by radioligand binding assay (RBA) that provides quasi-quantitative values reflecting potency (product between concentration and affinity) of specific autoantibodies. Aiming to improve the characterization of the specific humoral immune response, we selected surface plasmon resonance (SPR) as an alternative method to measure proinsulin autoantibodies (PAA). This novel technology has allowed real time detection of antibodies interaction and kinetic analysis. Herein, we have employed SPR to characterize the PAA present in sera from 28 childhood-onset (mean age 8.31±4.20) and 23 adult-onset diabetic patients (≥65 years old, BMI<30) in terms of concentration and affinity. When evaluating comparatively samples from both groups, childhood-onset diabetic patients presented lower PAA concentrations and higher affinities (median 67.12×10−9 M and 3.50×107 M−1, respectively) than the adults (median 167.4×10−9 M and 0.84×107 M−1, respectively). These results are consistent with those from the reference method RBA (Standard Deviation score median 9.49 for childhood-onset group and 5.04 for adult-onset group) where the binding can be directly related to the intrinsic affinity of the antibody, suggesting that there is a different etiopathogenic pathway between both types of clinical presentation of the disease. This technology has shown to be a useful tool for the characterization of PAAs parameters as an alternative to radioimmunoassay, with high versatility and reproducibility associated to low occupational and environmental risk. However, this technology is not eligible for routine marker screening, but this is a powerful technique for a fine description of the thermodynamic parameters of antigen-antibody interaction

    Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: a pilot study

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>To investigate the impact of iron intake on the development of type 1 diabetes (T1DM).</p> <p>Methods</p> <p>Case-control study with self-administered questionnaire among families of children with T1DM who were less than 10 years old at the time of the survey and developed diabetes between age 1 and 6 years. Data on the types of infant feeding in the first 4 months of life was collected from parents of children with T1DM (n = 128) and controls (n = 67) <10 years old. Because some cases had sibling controls, we used conditional logistic regression models to analyze the data in two ways. First we performed a case-control analysis of all 128 cases and 67 controls. Next, we performed a case-control analysis restricted to cases (n = 59) that had a sibling without diabetes (n = 59). Total iron intake was modeled as one standard deviation (SD) increase in iron intake. The SD for iron intake was 540 mg in the total sample and 539 mg in the restricted sample as defined above.</p> <p>Results</p> <p>The median (min, max) total iron intake in the first 4 months of life was 1159 (50, 2399) mg in T1DM cases and 466 (50, 1224) mg among controls (<it>P </it>< 0.001). For each one standard deviation increase in iron intake, the odds ratio (95% confidence interval) for type 1 diabetes was 2.01 (1.183, 3.41) among all participants (128 cases and 67 controls) while it was 2.26 (1.27, 4.03) in a restricted sample of T1 D cases with a control sibling (59 cases and 59 controls) in models adjusted for birth weight, age at the time of the survey, and birth order.</p> <p>Conclusion</p> <p>In this pilot study, high iron intake in the first 4 months of infancy is associated with T1DM. Whether iron intake is causal or a marker of another risk factor warrants further investigation.</p
    corecore