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Abstract Gluten proteins differ from other cereal proteins as
they are partly resistant to enzymatic processing in the intes-
tine, resulting in a continuous exposure of the proteins to the
intestinal immune system. In addition to being a disease-
initiating factor in coeliac disease (CD), gluten intake might
affect type 1 diabetes development. Studies in animal models
of type 1 diabetes have documented that the pathogenesis is
influenced by diet. Thus, a gluten-free diet largely prevents
diabetes in NOD mice while a cereal-based diet promotes
diabetes development. In infants, amount, timing and mode
of introduction have been shown to affect the diabetogenic
potential of gluten, and some studies now suggest that a
gluten-free diet may preserve beta cell function. Other studies
have not found this effect. There is evidence that the intestinal
immune system plays a primary role in the pathogenesis of
type 1 diabetes, as diabetogenic T cells are initially primed in
the gut, islet-infiltrating T cells express gut-associated homing
receptors, and mesenteric lymphocytes transfer diabetes from
NOD mice to NOD/severe combined immunodeficiency
(SCID) mice. Thus, gluten may affect diabetes development
by influencing proportional changes in immune cell popula-
tions or bymodifying the cytokine/chemokine pattern towards
an inflammatory profile. This supports an important role for
gluten intake in the pathogenesis of type 1 diabetes and further
studies should be initiated to clarify whether a gluten-free diet

could prevent disease in susceptible individuals or be used
with newly diagnosed patients to stop disease progression.
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Abbreviations
APC Antigen-presenting cell
BB BioBreeding
CD Coeliac disease
DAISY Diabetes Autoimmunity Study in the Young
DC Dendritic cell
FOXP3 Forkhead box P3
GALT Gut-associated lymphoid tissue
MLN Mesenteric lymph nodes
MyD88 Myeloid differentiation factor 88
NK Natural killer
PLN Pancreas-associated lymph nodes
SPF Specific-pathogen-free
Th T helper
TLR Toll-like receptor
tTG Tissue transglutaminase

Type 1 diabetes and coeliac disease

Type 1 diabetes incidence has increased over the last two
decades, especially in children under the age of 5 [1]. Type
1 diabetes is a multifactorial disease in which the genetic
background is essential, but not sufficient for causing the
disease. Type 1 diabetes incidence has been rising more rap-
idly than can be accounted for by genetic changes, thus
emphasising the influence of environmental factors [2]. Dif-
ferent environmental factors could play a role in type 1
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diabetes susceptibility: cereal proteins, cow’s milk proteins,
low vitamin D, enteroviruses, changes in the composition of
gut microbiota and stressful life events. Further, the ‘hygiene
hypothesis’ suggests that exposure to a large number of infec-
tions early in life prevents the development of autoimmunity
through appropriate priming of the adaptive immune system [3]
(Fig. 1).

Coeliac disease (CD) is an inflammatory intestinal dis-
ease with autoimmune features triggered by exposure to
dietary gluten and related cereal proteins. The proteins
induce an inflammatory immune response in the intestine;
their withdrawal results in disease remission. The intestinal
inflammation can result in complete destruction of the
intestinal epithelium with crypt hyperplasia, loss of the
villous structure and infiltration of lymphocytes, with con-
sequent malabsorption of nutrients, vitamins and minerals
[4]. Screening studies indicate that CD has a high preva-
lence (≈1%) in many Western countries and that a large
group of people have undetected CD, which has led to the
concept of a ‘coeliac iceberg’, depicting different undiag-
nosed, silent forms of CD [5].

The pathogenesis is initiated when gluten peptides cross
the intestinal epithelium. The peptides can be deamidated or
crosslinked by the enzyme tissue transglutaminase (tTG).
Deamidation introduces a negative charge into the gluten
peptides, increasing their binding affinity to HLA-DQ2 or
HLA-DQ8 on antigen-presenting cells (APCs), and thereby
increasing the possibility of reaching the threshold required to
prime gluten-reactive T cells. The intestinal CD4+ T cell
response is directed against many different epitopes in the
gluten proteins. However, the T cell epitopes tend to cluster
in proline-rich regions of the gluten proteins [4]. Of particular
interest is the observation that nearly all T cell lines from adult
CD patients recognise the same 33-mer gliadin peptide. It
contains six HLA-DQ2-binding and T cell-stimulatory epi-
topes and is resistant to intestinal digestion [6]. CD is more-
over characterised by IgA and IgG autoantibodies directed

against tTG, by intestinal activation of T helper (Th)17 cells,
CD8+ Tcells,γδTcells, natural killer (NK) cells and dendritic
cells (DCs) [7–9], and by the direct effect of gluten on intes-
tinal enterocytes [10].

The association between CD and type 1 diabetes is well
established

Type 1 diabetes and CD share a similar genetic background,
with high susceptibility associated with the HLA-DQ2/DQ8
genotype. Several other genes are also implicated in suscepti-
bility to both diseases, while up to 15 risk alleles contribute to
both diseases [11]. This is at least part of the explanation as to
why there is a high prevalence of patients with both diseases.
Thus, studies have revealed an average CD prevalence of 2–
12% among children with type 1 diabetes [12, 13], and among
patients diagnosed with both type 1 diabetes and CD, the
majority of the patients were diagnosed with type 1 diabetes
before CD, probably due to the diabetes-protective effect of a
gluten-free diet [14].

Dietary gluten

The taxonomic relationship of cereals classifies them into
different subfamilies, where wheat, rye and barley are in the
same tribe. Wheat has highly viscoelastic properties, which
allow dough to form when wheat flour is mixed with water.
This viscoelastic network is called gluten. The major compo-
nents of gluten are storage proteins called prolamins, which
can be separated into two groups: gliadins (α-, γ- and
ω-gliadin) and glutenins. The prolamin storage proteins in
wheat, rye and barley differ from other cereals' storage pro-
teins in the following ways (Table 1): they are present in
higher amounts, have a higher molecular mass and contain
higher proportions of proline and glutamine. Finally, the
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Fig. 1 Dietary gluten affects the
development of type 1 diabetes.
The influence of genetic
predisposition, different
environmental factors and dietary
gluten on disease pathogenesis.
Type 1 diabetes is a multifactorial
disease, the development of
which is dependent on genetic as
well as environment factors,
which alone or together affect
immune balance, resulting either
in protection against or
susceptibility to disease
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prolamins in wheat, rye and barley are insoluble in
water, because of the presence of highly hydrophobic
repeated sequences [15, 16].

Thus, the storage proteins in wheat, rye and barley have
several properties that distinguish them from other cereal
proteins. So far, most studies have focused on the gliadins
and glutenins of wheat gluten, but because of the similar
structures of rye and barley, many of the results can also be
applied to these cereals.

Gluten peptides show resistance to enzymatic processing
in the intestine

The normal digestive breakdown of dietary proteins ensures
that peptides are efficiently hydrolysed into amino acids and
di- or tripeptides before they are transported across the intes-
tinal epithelium. This process ensures that the proteins are
rendered harmless, because di- and tripeptides cannot initiate
an adaptive immune response. As mentioned, the amino acid
sequences of gluten and related proteins from rye and barley
are very rich in proline residues, which render them resistant
to enzymatic processing at two levels: at the gastric/pancreatic
level and at the brush-border peptidase level [17]. The slow
cleavage rate implies that there could be an intestinal, luminal
accumulation of gliadin peptides following a gluten-
containing meal. In vitro experiments showed that prolonged
treatment of intact α2-gliadin with gastric and pancreatic
enzymes and brush-border membrane fractions resulted in a
stable proteolyt ic fragment, the 33-mer peptide
(LQLQPFPQPQLPYPQPQ-LPYPQPQLPYPQPQPF).
While control dietary peptides were rapidly proteolysed, the
33-mer peptide remained intact. Homologue sequences to the
33-mer were found in rye and barley, but not in oats or other
cereals [6]. Thus, proteins from wheat, rye and barley can be
expected to be comparably resistant to proteolysis. Ingestion
of gluten is therefore likely to result in sustained, high intes-
tinal concentrations of non-degradable gluten peptides.

Gluten and the intestinal microbiota

It has been reported that microbial enzymes are capable of
degrading gluten proteins [18]. Data suggest that CD patients
have higher levels of gliadin-metabolising enzymes with bac-
terial origin than do healthy controls. It has been suggested
that gliadin proteolysis by intestinal bacteria could initiate CD,
due to the formation of immunogenic gluten peptides [19].
The possible involvement of the intestinal microflora in the
pathogenesis of CD is supported by studies showing that CD
patients exhibit changes in the composition of the duodenal
microbiota of the gut [20]. On the other hand, intragastric
application of gluten to AVN rats (an animal model of CD)
at birth induced features of gluten enteropathy [21]. Such
results were also reproducible in germ-free rats, suggesting
direct activation of intestinal immune responses by gluten
proteins [22].

Observations that specific-pathogen-free (SPF) animal
facilities (e.g. positively defined SPF microflora, such as
altered Schaedler microflora), antibiotic decontamination
and re-derivation of the breeding nucleus facilitate high
diabetes incidence in NOD mice, show the role of intes-
tinal microflora in type 1 diabetes development [23]. An
early study in BioBreeding (BB) rats documented that
treatment with fusidic acid [24] and vancomycin [25],
both antibiotics against Gram-positive bacteria, reduce di-
abetes incidence. Heat-killed Lactobacillus casei fed to
NOD mice also prevented development of diabetes [26].
Thus, clean conditions seem to increase type 1 diabetes
incidence, whereas infections (including parasites) and ad-
ministration of bacterial components decrease the develop-
ment of the disease. Wen et al have further documented
higher diabetes incidence in germ-free mice compared
with SPF-reared NOD mice and have described possible
innate immune mechanisms involved in the disease pro-
cesses [27]. These data indicate that commensal microflora
have a modifying, disease-preventive effect on type 1
diabetes.

Gluten intake directly affects the composition of the intes-
tinal microflora, as NOD mice fed a gluten-free diet have
reduced numbers of caecal bacteria and Gram-positive bacte-
ria compared with mice fed a standard diet containing wheat
proteins [28]. In a recent study by Marietta et al, a gluten-
containing diet specifically increased Bifidobacterium,
Tannerella and Barnesiella species, whereas Akkermansia
was increased in the intestinal microflora of NOD mice fed a
gluten-free diet [29].

Both intestinal microflora and diet influence penetration of
type 1 diabetes in the animal models. When certain diabetes-
preventive diets were first tested in gnotobiotic (microflora-
defined) or germ-free conditions, it was revealed that
microbiota-independent mechanisms are responsible for the
protective effects of these diets; however, other diets (e.g.

Table 1 Gluten proteins differ from other cereal proteins

Property Wheat, rye, barley Other cereals (e.g. oats,
rice, maize)

Level of prolamins 40–50% 10% (in oats)a

Molecular mass 30–90 kDa 10–16 kDa (in rice)a

Amino acid sequence ↑ Proline ↑ Leucine

↑ Glutamine ↑ Alanine (in maize)a

Repeats PQQPFPQQ VLPA or FNQLA

(90%) (25% in maize)a

a Representative for non-gluten-containing cereals
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hydrolysed casein-based formula) have been found to have a
microbiota-dependent diabetes-protective effect (D. P. Funda,
unpublished results). Patrick et al showed that a diet based on
cereals was a stronger promoter of type 1 diabetes than gut
microbes; thus, a more significant protection from disease
development was observed by feeding a hydrolysed casein-
based diet than could be obtained by altering the microbiota
[30]. More studies in germ-free and gnotobiotic animals are
needed to clarify the mechanisms and the interplay between
different dietary (not specifically gluten) and microbial
factors in type 1 diabetes prevention, and to determine
which diet-induced changes to the composition of commen-
sal microflora have causative effects on the pathogenesis of
type 1 diabetes.

Dietary gluten influences the development of type 1
diabetes

Evidence of the interplay between ingested gluten and the
subsequent development of type 1 diabetes has been revealed
by studies in humans and animals.

In 1999 we demonstrated that a gluten-free, non-
purified diet largely prevented diabetes onset in NOD
mice, as following a gluten-free diet for 320 days reduced
the incidence of diabetes from 64% in control mice to
15% in mice on the gluten-free diet [31] with a further
incidence reduction to 6% in mice never exposed to
gluten either in the uterus or in diet [32]. The highest
incidence of type 1 diabetes in experimental animal
models is found in animals on a wheat-based diet [33],
and a cereal-based diet promotes type 1 diabetes develop-
ment in both NOD mice and BB rats [34, 35]. This
suggests a clear correlation between gluten intake and
increased diabetes susceptibility.

In a preliminary study in humans, the autoantibody
titres did not show significant changes in response to a
gluten-free diet. However, the insulin response in a
glucose tolerance test increased in 12 out of 14 patients
on the gluten-free diet. After returning to a normal diet,
the acute insulin response decreased in ten out of 13
patients. Furthermore, insulin sensitivity, measured as
HOMA-IR, improved on the gluten-free diet and subse-
quently decreased after 6 months back on the normal
diet [36]. The effect of a gluten-free diet for 1 year was
also investigated in seven children predisposed to type 1
diabetes who tested positive for beta cell autoantibodies.
The gluten-free diet did not influence the autoantibody
titres [37]. This is in contrast to a recently reported
study of a 5-year-old boy diagnosed with classical type
1 diabetes without CD. The patient was introduced to a
gluten-free diet, resulting in a reduction in HbA1c from
7.8% to 5.8–6.0% without insulin therapy. Fasting blood

glucose was maintained at 4.0–5.0 mmol/l. At 16 months
after diagnosis the fasting blood glucose was 4.1 mmol/
l, and after 20 months he was still without daily insulin
therapy, suggesting that the gluten-free diet prolonged
remission in this patient with type 1 diabetes [38]. In
studies of patients with both CD and type 1 diabetes, a
gluten-free diet mediated clinical improvements, such as
increases in weight, height, haemoglobin level, corpus-
cular volume and diabetic control [13, 39]. However,
other studies found no effect [40, 41]. The findings
indicate that a gluten-free diet may have a beneficial
effect on the preservation of beta cell function in high-
risk individuals. The mechanism by which gluten's re-
moval from the diet could improve insulin secretion is,
however, unclear.

The studies mentioned above investigated individuals posi-
tive for beta cell autoantibodies, which implies an already
initiated immune response against the islets. However, a large
human intervention trial is needed to investigate possible
preventive effects of a permanent gluten-free diet in geneti-
cally predisposed individuals.

A subset of type 1 diabetic patients has an abnormal
immune response to gluten

Gluten challenge has been used in CD patients to assess
their mucosal immune response to gluten, but has also
been used as a tool to study an abnormal immune
reactivity to gluten in type 1 diabetic patients. In a
study of 19 type 1 diabetic children, 20% reacted to
rectal gluten challenge by lymphocyte infiltration in the
epithelium and the underlying lamina propria. The pa-
tients all had HLA-haplotypes associated with CD, but
normal mucosal histology and tTG antibody-negative
serology [42]. Recently, it was shown that 20 out of
42 type 1 diabetic patients (tTG antibody-negative) had
increased proliferative T cell response (peripheral blood
mononuclear cells) to wheat proteins, with production of
proinflammatory cytokines, such as IFNγ, IL-17A and
TNF. Interestingly, this response to gluten was not ex-
plained by CD-associated haplotypes, which indicates
that the proinflammatory response to wheat proteins is
not only present in CD patients [43]. This study is
supported by earlier findings of an increased T cell
response to gluten in 24% of newly diagnosed type 1
diabetic patients [44]. The results show that an abnor-
mal mucosal immune response to gluten is present in at
least a subset of type 1 diabetic patients. The associa-
tion may simply reflect the common genetic background
of CD and type 1 diabetes; however, the studies
reporting a specific immune response to gluten in type
1 diabetic patients without CD-associated HLA-
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haplotype suggest a direct, diabetes-specific effect of
gluten.

Besides the effect of gluten proteins on the development of
type 1 diabetes, other components of wheat, such as wheat
storage globulin (Glo-3A), may also be associated with dis-
ease [45]. However, Glo-3A antibody levels did not differ in a
recent study comparing islet-autoantibody-positive children
with controls [46].

These studies support the idea that gluten, and perhaps
other wheat proteins, influence the development of type 1
diabetes.

The diabetogenic effect of gluten can be modified

Several different factors affect the diabetogenic potential of
gluten: the amount of ingested gluten, and the timing and
mode of gluten introduction.

The dose or amount of ingested gluten was earlier
found to be important in maintaining a tolerant immune
response to gluten. NOD mice fed a diet four times
higher in gluten content than the standard diet showed
protection from type 1 diabetes at the same level as the
gluten-free diet [32]. This finding is supported by stud-
ies showing dose-dependent effects of gluten on type 1
diabetes development in NOD mice, where high wheat
concentrations returned diabetes incidence to the same
level as in control mice [47].

Two prospective cohort studies (BABYDIAB and
Diabetes Autoimmunity Study in the Young [DAISY])
have established a connection between the timing of
early exposure to gluten and the risk of developing
islet-specific antibodies. The BABYDIAB study found
that children exposed to gluten-containing cereals before
the age of 3 months have an increased risk (HR 4.0) of
developing islet autoantibodies, compared with children
who only received breast milk during the same period.
Children receiving gluten after the age of 6 months did
not have an increased risk of developing islet autoanti-
bodies [48]. The DAISY study found that children ex-
posed to both non-gluten-containing and gluten-
containing cereals before the age of 3 months (HR
4.32), or after 7 months (HR 5.6), had an increased
risk of islet autoimmunity compared with children first
exposed to gluten between the ages of 4 and 6 months
[49]. Moreover, the DAISY study showed that if cereals
were introduced while the child was still being
breastfed, the risk of developing islet antibodies was
reduced [49]. Both studies found that early introduction
of foods containing gluten or other cereals before the
age of 3 months is associated with an increased risk of
islet autoimmunity in childhood. This reflects that there
may be a ‘time window’ for gluten introduction, that

best allows tolerance to be achieved [50], and that the
timing of the first exposure to gluten may influence
overall immune tolerance to food antigens [51]. How-
ever, a delayed timing of first gluten exposure (12 vs
6 months) in infants was tried in a dietary intervention
trial including 150 infants with a first-degree family
history of type 1 diabetes and a risk HLA genotype.
During the first 3 years of age there was no significant
difference between the early and late exposure groups
according to the risk for developing type 1 diabetes
[52]. These results are supported by an earlier finding
showing that time for gluten introduction had no influ-
ence on development of diabetes-related autoantibodies
in non-diabetic children [53]. However, the latter study
does not define the exact time point for gluten intro-
duction nor does it record simultaneous breastfeeding.
The importance of timing of first exposure to solid food
is not only restricted to gluten exposure, as it has also
been found that early introduction of root vegetables, by
the age of 4 months, is associated with increased risk
for beta cell autoimmunity [54], indicating that oral
tolerance induction towards different food antigens
could play an important role for the risk of type 1
diabetes development.

The mode of gluten introduction has also been
shown to influence gluten's diabetogenic effect. The
development of diabetes in BB rats is modified accord-
ing to the diet they are fed during and after weaning.
When gluten is introduced to BB rats after weaning, it
seems to be a potent inducer of diabetes. On the other
hand, if gluten is introduced early in BB rat neonates,
while they are still being exposed to lactation, the
diabetes incidence is significantly reduced [55]. This
supports the previously mentioned result found in the
DAISY study and is consistent with recent findings on
the modification of gluten intake in NOD mice, where
early avoidance of gluten immediately after weaning
delays diabetes onset and is associated with reduced
insulin autoantibodies and insulitis [56]. This implies
that modifying exposure to gluten can influence its
diabetogenic potential.

Moreover, the importance of amount, timing and
mode of gluten introduction is supported by a study
investigating differences in infant diet after an increase
in the incidence of CD was observed in Sweden between
1985 and 1987. The annual incidence rate of CD in
children below 2 years of age increased fourfold in this
period, followed by a sharp decline to the previous level.
The rise seemed to be the result of changes in the infant
diet: an increase in the amount of gluten consumed, the
postponement of gluten introduction from 4 to 6 months
of age, and the interruption of breastfeeding when gluten
was introduced [57]. The possible protection from CD
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[58] and type 1 diabetes associated with breastfeeding
[59] could be explained by the immune-modulating ef-
fect of breastfeeding on the developing cellular immune
system.

This implies that differences in gluten introduction can
have an impact on gluten's diabetogenic potential, and thus,
on its effect on the development of CD and type 1 diabetes.

The intestinal immune system is involved
in the pathogenesis of type 1 diabetes

Evidence points toward the involvement of the intestinal
immune system in the development of type 1 diabetes and
studies suggest that pancreas-infiltrating autoreactive T cells
may be activated in the gut-associated lymphoid tissue
(GALT) (Text box: The intestinal immune system is involved
in the pathogenesis of type 1 diabetes).

The intestinal immune system is involved in the
pathogenesis of type 1 diabetes

Animal studies
Diabetogenic T cells are initially primed in the gut [65]
Islet-infiltrating T cells express gut-associated homing
receptor [62]

Mesential lymphocytes transfer diabetes to healthy mice
[64]

Prediabetic BB rats show intestinal morphological and
immunological changes [68, 69, 95, 96]

Diabetes-prone animals have increased intestinal
permeability [74, 76]

Human studies
T cells derived from diabetic pancreas tissue adhere to
mucosal endothelium [66]

GAD-reactive lymphocytes express gut-associated
homing receptor [67]

Immunological activity in the small intestine is seen in
diabetic patients without CD [60, 61]
Gastrointestinal alterations are found in type 1 diabetic
patients [70–72]

Type 1 diabetic patients have high zonulin levels,
associated with increased gut permeability [75]

Paediatric patients with type 1 diabetes, but without
signs of CD, had increased expression of MHC class II
antigens and intercellular adhesion molecule 1 (ICAM-1)
on the intestinal epithelium [60, 61]. The jejunal speci-
mens contained higher concentrations of IFNγ- and
TNFα-positive cells, and had a higher density of IL-
1α- and IL-4-positive cells in the lamina propria, than

those of healthy controls. While IL-1α is a proinflam-
matory cytokine secreted by monocytes and epithelial
cells during intestinal inflammation, IL-4 is a Th2 cyto-
kine, known to enhance epithelial permeability [61]. In-
terestingly, these findings were not restricted to patients
carrying HLA-DQ2, suggesting an intestinal inflammato-
ry response in type 1 diabetic patients, independent of a
CD-associated genotype. Therefore, it seems that the gut
immune system is activated in type 1 diabetic patients,
and that activation is not only due to the shared genotype
with CD patients.

In NOD mice, lymphocytes infiltrating the islets,
especially during the prediabetic phase, express the
GALT-specific α4β7 integrin [62], and antibodies
blocking the α4β7 integrin prevent diabetes [62, 63].
This suggests a role for the intestinal immune system in
the early phases of diabetes. Moreover, it has been
shown that mesenteric lymphocytes transfer diabetes
from NOD mice to non-diabetic mice, which indicates
that diabetogenic T cells are activated in the mesenteric
immune system before infiltrating the pancreas [64].
Similarly, lymphocytes with diabetogenic potential iso-
lated from 3-week-old NOD mice were found in gut-
associated lymph nodes [65]. This suggests that the
initial priming of diabetogenic cells takes place in the
gut and that further amplification of the autoimmune
response may occur in the pancreas-associated lymph
nodes (PLN) [65]. Human studies also support the hy-
pothesis that autoreactive T cells may originate from the
intestinal immune system, as lymphocytes from diabetic
pancreases were found to adhere specifically to mucosal
and pancreatic endothelium [66] and GAD-reactive T
cells from patients with type 1 diabetes were shown to
express α4β7 integrin [67].

These findings suggest that the gut immune system is
activated in patients with type 1 diabetes, and that the pancreas
and the gut share the same lymphocyte recirculation pool.
This supports the notion that autoreactive T cells infiltrating
the pancreas could be activated in GALT. It is not clear,
however, to what extent these changes are attributable to
gluten.

Gastrointestinal alterations in type 1 diabetes

Changes in intestinal morphology and permeability, which
may or may not involve gluten, have been recognised both
in animal models of type 1 diabetes and in human patients.

BB rats have several features suggesting intestinal
malfunction. These include increased intestinal perme-
ability, changes in mucosal crypt depth, massive epi-
thelial cell proliferation, lymphocyte infiltration, and
proinflammatory activity, before the development of
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both insulitis and diabetes [68, 69]. Human studies also
support the notion that gastrointestinal changes precede
the onset of type 1 diabetes. In a study of patients with
islet autoimmunity at different stages all patients
showed an increase in intestinal permeability in a
lactulose–mannitol test [70]; alterations in intestinal
barrier structure and function in non-coeliac type 1
diabetic patients have also been described [71]. Like-
wise, HLA-DQ2-positive paediatric diabetic patients
had higher intestinal permeability, which could facilitate
contact of food antigens with the mucosal immune
system [72]. This implies that these patients may be
more prone to developing abnormal immune responses
to common food antigens. It is also consistent with the
development of CD, where changes in the intestinal
barrier function and tight junction structure of the jeju-
num of children with CD take place early on in the
disease development [73]. The findings point to the
crucial role intestinal barrier functions play in relation
to both CD and type 1 diabetes development and,
furthermore, suggest that a primary intestinal defect
could exist in patients with type 1 diabetes.

The importance of changes in intestinal permeability is
further supported by findings regarding changes in zonulin,
a protein that opens intestinal tight junctions. In the diabetes-
prone BB rat, intestinal, intraluminal zonulin levels are ele-
vated 35-fold compared with levels in the diabetes-resistant
BB rat [74]. Likewise, 70% of type 1 diabetes at-risk subjects
with elevated autoantibodies but no established disease had
increased serum zonulin levels [75]. Blocking the zonulin
receptor reduces diabetes incidence by 70% [74] and restora-
tion of the impaired intestinal barrier contributes to the pre-
vention of type 1 diabetes in BB rats [76]. Thus, upregulation
of zonulin, with consequent increased intestinal permeability,
precedes the onset of type 1 diabetes. The latter is a direct
effect of gliadin, which binds to the chemokine receptor
chemokine (C-X-C motif) receptor 3 (CXCR3), leading to
myeloid differentiation factor 88 (MyD88)-dependent zonulin
release in enterocytes [77], but factors other than gluten could
influence intestinal permeability in both animal models of
type 1 diabetes and patients.

These studies show that changes in intestinal morphology
and permeability possibly precede development of type 1
diabetes.

The effect of dietary gluten on the immune system has not
been clarified

The mechanisms by which dietary gluten influences the im-
mune system have not been well characterised, although some
studies have been performed (Text box: In vivo and in vitro

studies provide evidence for a direct effect of gluten on the
immune system).

In vivo and in vitro studies provide evidence for a
direct effect of gluten on the immune system

Effect of gluten intake (in vitro studies)
Macrophages: proinflammatory cytokine production; NO
production [85, 86, 97]

Dendritic cells: upregulation of MHCII; maturation
markers; co-stimulatory molecules; TLRs; cytokine and
chemokine production [7, 8, 84]

Effect of gluten intake (in vivo studies)
NOD mice show Th1/Th17 cytokine bias in the intestine
[78, 98]

NOD mice show increased activated intestinal CD4+ T
cells, DCs and Th17 cells [98]

BB rats show a Th1 cytokine bias in MLN [79] and
intestine [55]

BB rats show a Th1 cytokine pattern in islet infiltrate
[83]
Proportional changes in regulatory T cell subsets in
BALB/c mice [81]

Increased number of Th17 cells in PLN in BALB/c
mice [81]
Inflammatory cytokine pattern in FOXP3− and FOXP3+ T
cells in BALB/c mice [82]
Innate immune activation [99]

First, in NODmice, gluten intake promotes a Th1 cytokine
bias in the small intestine, compared with a semi-purified
hypoallergenic diet [78]. This was confirmed in a study in
young BB rats showing that a wheat-based diet induces a
proinflammatory Th1 bias in the mesenteric lymph nodes
(MLN), with a high proportion of IFNγ+ CD4+ T cells that
proliferate specifically in response to wheat protein antigens.
In addition, abundance of the Th2 cytokine-specific transcrip-
tion factor GATA3 was reduced, while no change was seen in
the expression of the Th1 cytokine-specific transcription fac-
tor T-bet. This suggests that the MLN display a Th1 bias as a
result of the Th2 deficit. The Th1 cytokine bias existed as
early as 1 week before weaning, implying that the MLN cells
were primed towards a Th1 phenotype, prior to pancreatic
inflammation [79]. Conversely, BB rats fed a cereal-based diet
exhibited a decreased IFNγ/TGFβ ratio in the gut [55]. This
could imply that gluten's ability to induce a Th1 cytokine
profile in the gut of CD patients [80] also occurs in animal
models of type 1 diabetes. Recently, we published data show-
ing that gluten intake in BALB/c mice led to a decreased
proportion of γδ T cells in all lymphoid compartments stud-
ied, while the number of Th17 cells, which are associated with
the development of autoimmunity, increased substantially in
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PLN [81]. Furthermore, the gluten-containing diet changed
both forkhead box P3 (FOXP3)− T cells and FOXP3+ T cells,
to a more inflammatory cytokine profile, with higher levels of
IL-17, IL-2, IL-4 and IFNγ. In contrast, the gluten-free diet
induced an anti-inflammatory cytokine profile, with higher
proportions of TGFβ+FOXP3− T cells in all of the tested
lymphoid tissues and higher IL-10 expression within non-T
cells in the spleen [82]. Besides the intestinal Th1 cytokine
bias, a cereal-based diet also promoted a Th1 cytokine pattern
(high IFNγ and low IL-10 and TGFβ) in islet infiltrates.
Conversely, BB rats fed a hydrolysed, casein-based, semi-
purified diet had fewer islet-infiltrating cells, low IFNγ and
high levels of TGFβ. The non-cereal-based diet thus protected
BB rats from developing diabetes by inducing a non-
inflammatory cytokine pattern in the pancreas [83]. It is not
completely understood whether the immunological changes
are exclusively due to the effect of gluten or secondary to
gluten-induced changes in, for example, intestinal microbiota.

Interestingly, gluten has also been shown to directly stim-
ulate APCs. DCs derived from the bone marrow of BALB/c
mice were exposed to chymotrypsin-treated gluten, which
induced DC maturation with upregulation of MHC II, co-
stimulatory molecules (CD86, CD40, CD54) and high pro-
duction of MIP-2 and keratinocyte-derived cytokine (KC).
DCs exposed to 100 μg/ml gluten showed comparable effects
to DCs exposed to 10 ng/ml lipopolysaccharide, which em-
phasises the stimulating capacity of gluten [7]. Moreover, α-
chymotrypsin-digested gliadin stimulated the expression of
Toll-like receptors (TLRs) 4, 7 and 8, and the secretion of
IFNα from bone marrow-derived DCs in transgenic HLA-
DQ8 mice [84]. Human monocyte-derived DCs are also ma-
tured by gliadin. Stimulation leads to enhanced expression of
CD80, CD83 and CD86, plus upregulation of HLA-DR,
accompanied by an increased secretion of IL-6, IL-8, IL-10,
TNFα, monocyte chemotactic protein (MCP-1) and MCP-2.
After gliadin stimulation, the DCs showed reduced endocyto-
sis and an improved capacity to stimulate the proliferation of
allogeneic T cells [8]. Besides having an effect on DCs,
gliadin peptides also induce murine peritoneal macrophages
to express proinflammatory cytokine genes such as TNFα, IL-
12 and IL-15 [85] and NO production [86]. The cytokine
production was dependent on MyD88, which is a key adapter
molecule in the TLR/IL-1R signalling pathway [85]. The
gluten epitopes recognised by DCs and macrophages, and
the exact mechanisms of recognition, remain to be clarified.
However, the direct effect of gluten on APCs emphasises
gluten's immunogenic properties, and shows that gluten pep-
tides have the capacity to stimulate APCs to deliver co-
stimulatory signals to T cells.

Interestingly, it has been shown that specific gluten pep-
tides (e.g. p31-43) have a direct effect on the innate immune
system [87]. These gluten peptides induce expression of the
innate cytokines IL-15 and IFNα in the intestinal lamina

propria [10, 88], altering the tolerogenic phenotype of the
DCs. Moreover, these peptides also have the capacity to
directly activate epithelial cells in the gut by upregulation of
non-classical MHC class-I molecules (HLA-E), MIC-A and
MIC-B, and induce IL-15 secretion [89, 90]. MIC serves as a
ligand for the NK receptor NKG2D, which is expressed on the
intraepithelial CD8+ T lymphocytes. The cells become so-
called lymphokine-activated killer cells with NK-like cytolyt-
ic function, that is, they have the ability to kill target cells
independent of T cell receptor ligation. These cells induce
direct cytolysis of enterocytes via NKG2D–MIC engagement
in patients with CD [91]. Dietary gluten is thus found to
induce a Th1 cytokine bias in the gut and islet infiltrates in
NOD mice and BB rats, and it seems to induce innate cell
activation and maturation of APCs. Recently, it has been
suggested that some of the effects of gluten proteins are not
mediated by the proteins themselves, but by wheat amylase
trypsin inhibitors, which furthermore activate TLR4 [92].

Direct effects of gluten on pancreatic beta cells

Gliadin not only modulates the immune system but also
affects the target cells: the pancreatic beta cells. This was
recently shown in vitro and in vivo using gluten digested with
a range of digestive enzymes, as well as a 33-mer gliadin
peptide (residues 57–89 of alpha 2-gliadin). In vitro, both
stimuli increased the long-term (24 h), but not the short-term
(30 min), insulin secretion. It was possible to demonstrate that
the effect was due to closure of the ATP-sensitive K-channels,
by directly affecting the channels. In vivo, a long-term effect
was also seen. NOD mice, which were injected with gliadin
digest, obtained higher body weights as adults, probably
reflecting the higher insulin secretion from the islets [93]. Beta
cell stress can contribute to diabetes development through
increased antigen expression, whereas a reduction of diabetes
incidence is seen in animal models with early prophylactic
insulin treatment of diabetes-prone animals [94].

Conclusion

The present review describes the findings and development of
our knowledge over the last decades on the connection be-
tween gluten and the pathogenesis of type 1 diabetes. The
studies have primarily focused on describing incidence of type
1 diabetes in relation to the timing of introducing gluten into
the diet, and the influence of gluten on the intestinal flora and
the immune system.Most important is to evaluate the effect of
a gluten-free diet on human type 1 diabetes: in this regard, a
promising case has been published. In the future, the balance
between the innate and adaptive immune systems must be
clarified. The research field covering gluten, diet and type 1
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diabetes has proven surprisingly interesting and requires fur-
ther attention.
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