747 research outputs found

    Extraction of the proton charge radius from experiments

    Full text link
    Static properties of hadrons such as their radii and other moments of the electric and magnetic distributions can only be extracted using theoretical methods and not directly measured from experiments. As a result, discrepancies between the extracted values from different precision measurements can exist. The proton charge radius, rpr_p, which is either extracted from electron proton elastic scattering data or from hydrogen atom spectroscopy seems to be no exception. The value rp=0.84087(39)r_p = 0.84087(39) fm extracted from muonic hydrogen spectroscopy is about 4% smaller than that obtained from electron proton scattering or standard hydrogen spectroscopy. The resolution of this so called proton radius puzzle has been attempted in many different ways over the past six years. The present article reviews these attempts with a focus on the methods of extracting the radius.Comment: Mini review, 14 pages, 1 figur

    Experimental Study of the Role of Atomic Interactions on Quantum Transport

    Full text link
    We report an experimental study of quantum transport for atoms confined in a periodic potential and compare between thermal and BEC initial conditions. We observe ballistic transport for all values of well depth and initial conditions, and the measured expansion velocity for thermal atoms is in excellent agreement with a single-particle model. For weak wells, the expansion of the BEC is also in excellent agreement with single-particle theory, using an effective temperature. We observe a crossover to a new regime for the BEC case as the well depth is increased, indicating the importance of interactions on quantum transport.Comment: 4 pages, 3 figure

    Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box

    Full text link
    We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.Comment: 7 pages, 8 figure

    Evidence of Pentaquark States from K+ N Scattering Data?

    Full text link
    Motivated by the recent experimental evidence of the exotic B = S = +1 baryonic state Theta(1540), we examine the older existing data on K+ N elastic scattering through the time delay method. We find positive peaks in time delay around 1.545 and 1.6 GeV in the D03 and P01 partial waves of K+ N scattering respectively, in agreement with experiments. We also find an indication of the J=3/2 Theta* spin-orbit partner to the Theta, in the P03 partial wave at 1.6 GeV. We discuss the pros and contras of these findings in support of the interpretation of these peaks as possible exotics.Comment: 10 pages, 4 figure

    Real-time control of the periodicity of a standing wave: an optical accordion

    Full text link
    We report an experimental method to create optical lattices with real-time control of their periodicity. We demonstrate a continuous change of the lattice periodicity from 0.96 μ\mum to 11.2 μ\mum in one second, while the center fringe only moves less than 2.7 μ\mum during the whole process. This provides a powerful tool for controlling ultracold atoms in optical lattices, where small spacing is essential for quantum tunneling, and large spacing enables single-site manipulation and spatially resolved detection.Comment: 6 pages, 6 figure

    The weak strangeness production reaction pnpΛpn \to p\Lambda in a one-boson-exchange model

    Full text link
    The weak production of Lambdas in nucleon-nucleon scattering is studied in a meson-exchange framework. The weak transition operator for the NNNΛNN \to N \Lambda reaction is identical to a previously developed weak strangeness-changing transition potential ΛNNN\Lambda N \to NN that describes the nonmesonic decay of hypernuclei. The initial NNNN and final YNYN state interaction has been included by using realistic baryon-baryon forces that describe the available elastic scattering data. The total and differential cross sections as well as the parity-violating asymmetry are studied for the reaction pnpΛpn \to p\Lambda. These observables are found to be sensitive to the choice of the strong interaction potential and the structure of the weak transition potential.Comment: 25 pages, 8 postscript figures. Submitted to Phys. Rev.

    Salecker-Wigner-Peres clock and average tunneling times

    Full text link
    The quantum clock of Salecker-Wigner-Peres is used, by performing a post-selection of the final state, to obtain average transmission and reflection times associated to the scattering of localized wave packets by static potentials in one dimension. The behavior of these average times is studied for a gaussian wave packet, centered around a tunneling wave number, incident on a rectangular barrier and, in particular, on a double delta barrier potential. The regime of opaque barriers is investigated and the results show that the average transmission time does not saturate, showing no evidence of the Hartman effect (or its generalized version).Comment: 9 pages, 4 figure

    Collision times in pi-pi and pi-K scattering and spectroscopy of meson resonances

    Full text link
    Using the concept of collision time (time delay) introduced by Eisenbud and Wigner and its connection to on-shell intermediate unstable states, we study mesonic resonances in pi-pi and pi-K scattering. The time-delay method proves its usefulness by revealing the spectrum of the well-known rho- and K*-mesons and by supporting some speculations on rho-mesons in the 1200 MeV region. We use this method further to shed some light on more speculative meson resonances, among others the enigmatic scalars. We confirm the existence of chiralons below 1 GeV in the unflavoured and strange meson sector.Comment: 22 pages LaTex, 8 figure

    Shall We (Math and) Dance?

    Full text link
    Can we use mathematics, and in particular the abstract branch of category theory, to describe some basics of dance, and to highlight structural similarities between music and dance? We first summarize recent studies between mathematics and dance, and between music and categories. Then, we extend this formalism and diagrammatic thinking style to dance.Comment: preprin

    Coherent pion production in neutrino nucleus collision in the 1 GeV region

    Get PDF
    We calculate cross sections for coherent pion production in nuclei induced by neutrinos and antineutrinos of the electron and muon type. The analogies and differences between this process and the related ones of coherent pion production induced by photons, or the (p,n) and (3He,t)(^3 He, t) reactions are discussed. The process is one of the several ones occurring for intermediate energy neutrinos, to be considered when detecting atmospheric neutrinos. For this purpose the results shown here can be easily extrapolated to other energies and other nuclei.Comment: 13 pages, LaTex, 8 post-script figures available at [email protected]
    corecore