310 research outputs found

    A neonatal septic arthritis case caused by klebsiella pneumoniae: A case report

    Get PDF
    Septic arthritis is encountered very rarely during the neonatal period and its diagnosis can delay because of atypical symptoms, thus it may lead to serious sequelae. The sequale can be prevented by early diagnosis and concomitant treatment. In neonates, pain can be experienced as a result of pseudoparalysis and of movement of the effected joints. A 17-day-old neonatal patient was brought to our hospital with complaint of unrest and then diagnosed with septic arthritis due to propagation of Klebsiella pneumoniae in joint fluid culture was represented because of the rarity of such a case. © 2016, Journal of Clinical and Diagnostic Research. All rights reserved

    Variation of Fault Creep Along the Overdue Istanbul-Marmara Seismic Gap in NW Türkiye

    Get PDF
    Strain energy from tectonic loading can be partly released through aseismic creep. Earthquake repeaters, repeatedly activated brittle fault patches surrounded by creep, indicate steady-state creep that affects the amount of seismic energy available for the next large earthquake along a plate contact. The offshore Main Marmara Fault (MMF) of the North Anatolian Fault Zone represents a seismic gap capable of generating a M > 7 earthquake in direct vicinity to the mega-city Istanbul. Based on a newly compiled seismicity catalog, we identify repeating earthquakes to resolve the spatial creep variability along the MMF during a 15-year period. We observe a maximum of seismic repeaters indicating creep along the central and western MMF segments tapering off toward the locked onshore Ganos fault in the west, and the locked offshore Princes Islands segment immediately south of Istanbul in the east. This indicates a high degree of spatial creep variability along the Istanbul-Marmara seismic gap

    Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation

    Full text link
    We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band-lineup is determined from first-principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200

    Tunable adsorption on carbon nanotubes

    Full text link
    We investigated the adsorption of a single atom, hydrogen and aluminum, on single wall carbon nanotubes from first-principles. The adsorption is exothermic, and the associated binding energy varies inversely as the radius of the zigzag tube. We found that the adsorption of a single atom and related properties can be modified continuously and reversibly by the external radial deformation. The binding energy on the high curvature site of the deformed tube increases with increasing radial deformation. The effects of curvature and radial deformation depend on the chirality of the tube.Comment: To be appear in Physical Review Letter

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    Get PDF
    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise

    In-Service Training Needs of Teachers Working in Primary Schools About Mathematics: An Example in İstanbul,

    Get PDF
    Background: One of the fields with changes and developments is education, for sure. Changes and developments occur in many subjects such as instruction programs, teaching techniques and methods, educational technologies etc. It is also important for teachers, playing an important role in increasing the quality and efficiency in education, to have today’s current knowledge and skills. In this sense, in-service training plays the key role. Objective: The purpose of the study is to determine the in-service training perception of the teachers working in primary schools of MEB (Ministry of Education) about mathematics, and to ascertain the level of participation. Target population of the study is Istanbul, and the sample is composed of randomly selected 238 primary schools in different regions of the city. The study is a field application. Survey method was used in obtaining data. A questionnaire was applied to the participants in order to determine their demographic characteristics and their perceptions about in-service training. Cronbach’s alpha analysis was conducted for the reliability of the questions prepared, and the 0.972 coefficient was found. Descriptive statistics, independent sample t-test, variance analysis, chi-square analysis were used in the analysis of data. Results: Following the research, differences occurred regarding some items between the opinions about in-service training by the variables of sex, education and age. Moreover, following the analysis of the items by the type of school, it has been observed to result in differences on the items like increasing activities to establish the relation between mathematics and other disciplines, developing prediction strategies of students etc. Conclusion: As a result, efforts should be exerted to determine in-service training perceptions of teachers for math class, and to organize the required activities and arrangements in this direction, and to provide participation of teachers to regular and comprehensive in-service training activities. It can be stated that in-service training received for the branch shall make positive contributions for the lesson

    Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation

    Get PDF
    Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release
    corecore