236 research outputs found
Gauge Group and Topology Change
The purpose of this study is to examine the effect of topology change in the
initial universe. In this study, the concept of -cobordism is introduced to
argue about the topology change of the manifold on which a transformation group
acts. This -manifold has a fiber bundle structure if the group action is
free and is related to the spacetime in Kaluza-Klein theory or
Einstein-Yang-Mills system. Our results revealed that fundamental processes of
compactification in -manifolds. In these processes, the initial high
symmetry and multidimensional universe changes to present universe by the
mechanism which lowers the dimensions and symmetries.Comment: 8 page
On a stochastic partial differential equation with non-local diffusion
In this paper, we prove existence, uniqueness and regularity for a class of
stochastic partial differential equations with a fractional Laplacian driven by
a space-time white noise in dimension one. The equation we consider may also
include a reaction term
On -transforms of one-dimensional diffusions stopped upon hitting zero
For a one-dimensional diffusion on an interval for which 0 is the
regular-reflecting left boundary, three kinds of conditionings to avoid zero
are studied. The limit processes are -transforms of the process stopped
upon hitting zero, where 's are the ground state, the scale function, and
the renormalized zero-resolvent. Several properties of the -transforms are
investigated
Weak Values with Decoherence
The weak value of an observable is experimentally accessible by weak
measurements as theoretically analyzed by Aharonov et al. and recently
experimentally demonstrated. We introduce a weak operator associated with the
weak values and give a general framework of quantum operations to the W
operator in parallel with the Kraus representation of the completely positive
map for the density operator. The decoherence effect is also investigated in
terms of the weak measurement by a shift of a probe wave function of continuous
variable. As an application, we demonstrate how the geometric phase is affected
by the bit flip noise.Comment: 17 pages, 3 figure
Brownian Motions on Metric Graphs
Brownian motions on a metric graph are defined. Their generators are
characterized as Laplace operators subject to Wentzell boundary at every
vertex. Conversely, given a set of Wentzell boundary conditions at the vertices
of a metric graph, a Brownian motion is constructed pathwise on this graph so
that its generator satisfies the given boundary conditions.Comment: 43 pages, 7 figures. 2nd revision of our article 1102.4937: The
introduction has been modified, several references were added. This article
will appear in the special issue of Journal of Mathematical Physics
celebrating Elliott Lieb's 80th birthda
A Delayed Black and Scholes Formula I
In this article we develop an explicit formula for pricing European options
when the underlying stock price follows a non-linear stochastic differential
delay equation (sdde). We believe that the proposed model is sufficiently
flexible to fit real market data, and is yet simple enough to allow for a
closed-form representation of the option price. Furthermore, the model
maintains the no-arbitrage property and the completeness of the market. The
derivation of the option-pricing formula is based on an equivalent martingale
measure
-self-adjoint operators with -symmetries: extension theory approach
A well known tool in conventional (von Neumann) quantum mechanics is the
self-adjoint extension technique for symmetric operators. It is used, e.g., for
the construction of Dirac-Hermitian Hamiltonians with point-interaction
potentials. Here we reshape this technique to allow for the construction of
pseudo-Hermitian (-self-adjoint) Hamiltonians with complex
point-interactions. We demonstrate that the resulting Hamiltonians are
bijectively related with so called hypermaximal neutral subspaces of the defect
Krein space of the symmetric operator. This symmetric operator is allowed to
have arbitrary but equal deficiency indices . General properties of the
$\cC$ operators for these Hamiltonians are derived. A detailed study of
$\cC$-operator parametrizations and Krein type resolvent formulas is provided
for $J$-self-adjoint extensions of symmetric operators with deficiency indices
. The technique is exemplified on 1D pseudo-Hermitian Schr\"odinger and
Dirac Hamiltonians with complex point-interaction potentials
Quantum stochastic differential equations for boson and fermion systems -- Method of Non-Equilibrium Thermo Field Dynamics
A unified canonical operator formalism for quantum stochastic differential
equations, including the quantum stochastic Liouville equation and the quantum
Langevin equation both of the It\^o and the Stratonovich types, is presented
within the framework of Non-Equilibrium Thermo Field Dynamics (NETFD). It is
performed by introducing an appropriate martingale operator in the
Schr\"odinger and the Heisenberg representations with fermionic and bosonic
Brownian motions. In order to decide the double tilde conjugation rule and the
thermal state conditions for fermions, a generalization of the system
consisting of a vector field and Faddeev-Popov ghosts to dissipative open
situations is carried out within NETFD.Comment: 69 page
Regularity of Infinity for Elliptic Equations with Measurable Coefficients and Its Consequences
This paper introduces a notion of regularity (or irregularity) of the point
at infinity for the unbounded open subset of \rr^{N} concerning second order
uniformly elliptic equations with bounded and measurable coefficients,
according as whether the A-harmonic measure of the point at infinity is zero
(or positive). A necessary and sufficient condition for the existence of a
unique bounded solution to the Dirichlet problem in an arbitrary open set of
\rr^{N}, N\ge 3 is established in terms of the Wiener test for the regularity
of the point at infinity. It coincides with the Wiener test for the regularity
of the point at infinity in the case of Laplace equation. From the topological
point of view, the Wiener test at infinity presents thinness criteria of sets
near infinity in fine topology. Precisely, the open set is a deleted
neigborhood of the point at infinity in fine topology if and only if infinity
is irregular.Comment: 20 page
Complex Random Energy Model: Zeros and Fluctuations
The partition function of the random energy model at inverse temperature
is a sum of random exponentials , where are independent real standard normal random
variables (= random energies), and . We study the large limit of
the partition function viewed as an analytic function of the complex variable
. We identify the asymptotic structure of complex zeros of the partition
function confirming and extending predictions made in the theoretical physics
literature. We prove limit theorems for the random partition function at
complex , both on the logarithmic scale and on the level of limiting
distributions. Our results cover also the case of the sums of independent
identically distributed random exponentials with any given correlations between
the real and imaginary parts of the random exponent.Comment: 31 pages, 1 figur
- …