236 research outputs found

    Gauge Group and Topology Change

    Full text link
    The purpose of this study is to examine the effect of topology change in the initial universe. In this study, the concept of GG-cobordism is introduced to argue about the topology change of the manifold on which a transformation group acts. This GG-manifold has a fiber bundle structure if the group action is free and is related to the spacetime in Kaluza-Klein theory or Einstein-Yang-Mills system. Our results revealed that fundamental processes of compactification in GG-manifolds. In these processes, the initial high symmetry and multidimensional universe changes to present universe by the mechanism which lowers the dimensions and symmetries.Comment: 8 page

    On a stochastic partial differential equation with non-local diffusion

    Full text link
    In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reaction term

    On h h -transforms of one-dimensional diffusions stopped upon hitting zero

    Get PDF
    For a one-dimensional diffusion on an interval for which 0 is the regular-reflecting left boundary, three kinds of conditionings to avoid zero are studied. The limit processes are h h -transforms of the process stopped upon hitting zero, where h h 's are the ground state, the scale function, and the renormalized zero-resolvent. Several properties of the h h -transforms are investigated

    Weak Values with Decoherence

    Full text link
    The weak value of an observable is experimentally accessible by weak measurements as theoretically analyzed by Aharonov et al. and recently experimentally demonstrated. We introduce a weak operator associated with the weak values and give a general framework of quantum operations to the W operator in parallel with the Kraus representation of the completely positive map for the density operator. The decoherence effect is also investigated in terms of the weak measurement by a shift of a probe wave function of continuous variable. As an application, we demonstrate how the geometric phase is affected by the bit flip noise.Comment: 17 pages, 3 figure

    Brownian Motions on Metric Graphs

    Get PDF
    Brownian motions on a metric graph are defined. Their generators are characterized as Laplace operators subject to Wentzell boundary at every vertex. Conversely, given a set of Wentzell boundary conditions at the vertices of a metric graph, a Brownian motion is constructed pathwise on this graph so that its generator satisfies the given boundary conditions.Comment: 43 pages, 7 figures. 2nd revision of our article 1102.4937: The introduction has been modified, several references were added. This article will appear in the special issue of Journal of Mathematical Physics celebrating Elliott Lieb's 80th birthda

    A Delayed Black and Scholes Formula I

    Get PDF
    In this article we develop an explicit formula for pricing European options when the underlying stock price follows a non-linear stochastic differential delay equation (sdde). We believe that the proposed model is sufficiently flexible to fit real market data, and is yet simple enough to allow for a closed-form representation of the option price. Furthermore, the model maintains the no-arbitrage property and the completeness of the market. The derivation of the option-pricing formula is based on an equivalent martingale measure

    JJ-self-adjoint operators with C\mathcal{C}-symmetries: extension theory approach

    Full text link
    A well known tool in conventional (von Neumann) quantum mechanics is the self-adjoint extension technique for symmetric operators. It is used, e.g., for the construction of Dirac-Hermitian Hamiltonians with point-interaction potentials. Here we reshape this technique to allow for the construction of pseudo-Hermitian (JJ-self-adjoint) Hamiltonians with complex point-interactions. We demonstrate that the resulting Hamiltonians are bijectively related with so called hypermaximal neutral subspaces of the defect Krein space of the symmetric operator. This symmetric operator is allowed to have arbitrary but equal deficiency indices . General properties of the $\cC$ operators for these Hamiltonians are derived. A detailed study of $\cC$-operator parametrizations and Krein type resolvent formulas is provided for $J$-self-adjoint extensions of symmetric operators with deficiency indices . The technique is exemplified on 1D pseudo-Hermitian Schr\"odinger and Dirac Hamiltonians with complex point-interaction potentials

    Quantum stochastic differential equations for boson and fermion systems -- Method of Non-Equilibrium Thermo Field Dynamics

    Full text link
    A unified canonical operator formalism for quantum stochastic differential equations, including the quantum stochastic Liouville equation and the quantum Langevin equation both of the It\^o and the Stratonovich types, is presented within the framework of Non-Equilibrium Thermo Field Dynamics (NETFD). It is performed by introducing an appropriate martingale operator in the Schr\"odinger and the Heisenberg representations with fermionic and bosonic Brownian motions. In order to decide the double tilde conjugation rule and the thermal state conditions for fermions, a generalization of the system consisting of a vector field and Faddeev-Popov ghosts to dissipative open situations is carried out within NETFD.Comment: 69 page

    Regularity of Infinity for Elliptic Equations with Measurable Coefficients and Its Consequences

    Full text link
    This paper introduces a notion of regularity (or irregularity) of the point at infinity for the unbounded open subset of \rr^{N} concerning second order uniformly elliptic equations with bounded and measurable coefficients, according as whether the A-harmonic measure of the point at infinity is zero (or positive). A necessary and sufficient condition for the existence of a unique bounded solution to the Dirichlet problem in an arbitrary open set of \rr^{N}, N\ge 3 is established in terms of the Wiener test for the regularity of the point at infinity. It coincides with the Wiener test for the regularity of the point at infinity in the case of Laplace equation. From the topological point of view, the Wiener test at infinity presents thinness criteria of sets near infinity in fine topology. Precisely, the open set is a deleted neigborhood of the point at infinity in fine topology if and only if infinity is irregular.Comment: 20 page

    Complex Random Energy Model: Zeros and Fluctuations

    Get PDF
    The partition function of the random energy model at inverse temperature β\beta is a sum of random exponentials ZN(β)=k=1Nexp(βnXk)Z_N(\beta)=\sum_{k=1}^N \exp(\beta \sqrt{n} X_k), where X1,X2,...X_1,X_2,... are independent real standard normal random variables (= random energies), and n=logNn=\log N. We study the large NN limit of the partition function viewed as an analytic function of the complex variable β\beta. We identify the asymptotic structure of complex zeros of the partition function confirming and extending predictions made in the theoretical physics literature. We prove limit theorems for the random partition function at complex β\beta, both on the logarithmic scale and on the level of limiting distributions. Our results cover also the case of the sums of independent identically distributed random exponentials with any given correlations between the real and imaginary parts of the random exponent.Comment: 31 pages, 1 figur
    corecore