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On /-transforms of one-dimensional diffusions
stopped upon hitting zero

Kouji Yano and Yuko Yano

Abstract For a one-dimensional diffusion on an interval for which 0 is the regular-
reflecting left boundary, three kinds of conditionings to avoid zero are studied. The
limit processes are h-transforms of the process stopped upon hitting zero, where /’s
are the ground state, the scale function, and the renormalized zero-resolvent. Several
properties of the A-transforms are investigated.

1 Introduction

For the reflecting Brownian motion {(X;), (Px) c[o.) } and its excursion measure n

away from 0, it is well-known that P[X,] = x for all x > 0 and all ¢ > 0, where
{(X), (PY)[0.) } denotes the process stopped upon hitting 0, and 7 — n[X;] is con-
stant in 7 > 0. Here and throughout this paper we adopt the notation p[F] = [Fdu
for a measure u and a function F. The process conditioned to avoid zero may be re-
garded as the h-transform with respect to (x) = x of the Brownian motion stopped
upon hitting zero. The obtained process coincides with the 3-dimensional Bessel
process and appears in various aspects of n (see, e.g., [11] and [21]).

We study three analogues of conditioning to avoid zero for one-dimensional dif-
fusion processes. Adopting the natural scale s(x) = x, we let M = {(X;)r>0, (P)xer }
be a D,,D,-diffusion on I where I’ = [0,1') or [0,{'] and I = I’ or I' U{/}; the choices
of I’ and I depend on m (see Section 2). We suppose that 0 for M is regular-reflecting.
Let M = {(X;);>0, (P").es} denote the process M stopped upon hitting zero. We
focus on three functions which are involved in conditionings to avoid zero. The
first one is the natural scale s(x) = x. The second one is given as follows. When
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[’ is natural, we set %, = 0 and h, = s. When [’ is not natural, it was shown in
[17, Theorem 3.1] that the g-resolvent operator G{ on L*(dm) for M is compact
and is represented by the eigenfunction expansion Gg =Y, (q— %) fu ® f, with
0>7 > 17 > --- | —oo; in this case we write ¥, = ¥; and h, = f;. The obtained
function A, is the second one. The third one is

ho(x)zlim{rq(0,0)frq(x,O)}, (11)
q10

where r,4(x,y) denotes the resolvent density with respect to the speed measure. We
will prove hg always exists and we call i the renormalized zero-resolvent.

We now state three theorems concerning conditionings of M to avoid zero. Their
proofs will be given in Section 5. We write (.%; );>¢ for the natural filtration. Let T,
denote the first hitting time of a. The first conditioning is a slight generalization of
a formula found in [24, Section 2.2].

Theorem 1.1 Lerx € I'\ {0}. Let T be a stopping time and Fr be a bounded Fr-
measurable functional. Then
im PX[FT;T <T, < T()]
alsupl ]P)X(Ta < T())

X
IP’S{FT—T;T<T*}, (1.2)
X
where T, = sup,¢; 1. (If | is an isolated point in I, we understand that the symbol
lim1sups means the evaluation at a = I.)
The second conditioning is essentially due to McKean [17],[18].

Theorem 1.2 Lesx € I'\ {0}. Let T be a stopping time and Fr be a bounded Fr-
measurable functional. Then

X ]P)X[FT;T <t < To]
lim
= Pyt < Tp)

Ciy*Th* (XT)
hs(x)

=P |Fr ;T < oo (1.3)

The third conditioning is an analogue of Doney [6, Section 8] (see also Chaumont—
Doney [3]) for Lévy processes. For g > 0, we write e, for the exponential variable
independent of M.

Theorem 1.3 Ler x € I'\ {0}. Let T be a stopping time and Fr be a bounded Fr-
measurable functional. Then

lim PX[FT;T <ey < To] _po |:FT /’l()(XT)
ho(x)

ql0 Px (eq < To) o
The aim of this paper is to investigate several properties of the three functions /.,
ho and s and of the corresponding A-transforms.
We summarize some properties of the h-transforms of M as follows (See Section
2 for the definition of the boundary classification and see the end of Section 4 for
the classification of recurrence of 0; here we note that m(ee) < oo if and only if 0 is
positive recurrent):

;T<oo] (1.4)
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(i) If m(o0) = oo, we have that s, h, and hy all coincide. If I’ for M is natural with
m(eo) < oo, we have that s and &, coincide.
(i1) For the h-transform of MO for h=s, h, or hg, the boundary 0 is entrance.
(iii) For the h-transform of MO for h = s,

a. the process explodes to o in finite time when I’ for M is entrance;

b. the process has no killing inside the interior of I and is elastic at I’ when [’ for
M is regular-reflecting;

c. the process is conservative otherwise.

(iv) For the h-transform of M 0 for h = h,, the process is conservative.
(v) For the h-transform of M° for h = hy when m(e0) < oo, the process has killing
inside.

Let us give an example where the three functions are distinct from each other.
Let M be a reflecting Brownian motion on [0,/'] where both boundaries 0 and {’ are
regular-reflecting. Then we have

2 | mx x?
h*(x):?sm— ho(x):x—ﬁ,

o xe[0,0]. (1.5)

We shall come back to this example in Example 4.2.
We give several remarks about earlier studies related to the h-transforms for the
three functions.

1°). The h-transform of M for h = s is sometimes used to obtain a integral repre-
sentation of the excursion measure: see Salminen [23], Yano [29] and Salminen—
Vallois—Yor [24].

2°). The penalization problems for one-dimensional diffusions which generalize The-
orem 1.2 were studied in Profeta [19],[20].

3°). The counterpart of i for one-dimensional symmetric Lévy processes where ev-
ery point is regular for itself has been introduced by Salminen—Yor [25] who
proved an analogue of the Tanaka formula. Yano—Yano—Yor [33] and Yano [30]
[31] investigated the A-transform of M° and studied the penalisation problems
and related problems. For an approach to asymmetric cases, see Yano [32].

This paper is organized as follows. We prepare notation and several basic proper-
ties for one-dimensional generalized diffusions in Section 2 and for excursion mea-
sures in Section 3. In Section 4, we prove existence of . Section 5 is devoted to the
proofs of Theorems 1.1, 1.2 and 1.3. In Section 6, we study invariance and exces-
siveness of i and s. In Section 7, we study several properties of the h-transforms.
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2 Notation and basic properties for generalized diffusions

Let m and § be strictly-increasing functions (0,/') — R such that m is right-
continuous and s is continuous. We fix a constant 0 < ¢ < [’ (the choice of ¢ does
not affect the subsequent argument at all). We set

A= ] awd), B= ] awae). e

We adopt Feller’s classification of the right boundary I’ with a slight refinement as
follows:

(i) If F; <o and F, < o, then [’ is called regular. In this case we have s(I'—) < .
(i) If F; < eoand F> = oo, then [’ is called exir. In this case we have 5(I'—) < 0.
(iii) If F} = oo and F, < oo, then !’ is called enfrance. In this case we have m(l'—) < oo.
(iv) If F} = o0 and Fp = o, then !’ is called natural. In this case we have either s(I'—) =
oo or m(l'—) = o. There are three subcases as follows:

a. If 5(I'—) = oo and m(I'—) = oo, then ! is called type-1-natural.

b. If 5(I'—) = oo and m(I'—) < o, then [’ is called type-2-natural.

c. If 5(I'=) < oo and m(I'—) = oo, then ! is called rype-3-natural or natural-
approachable.

The classification of the left boundary 0 is defined in a similar way.
Let m be a function [0,00) — [0,00] which is non-decreasing, right-continuous
and m(0) = 0. We assume that there exist /' and [ with 0 < /" <[ < oo such that

strictly-increasing on [0,1'),
mis ¢ flat and finite on [/, 1), (2.2)
infinite on [/, o).

We take m = m|(y ) and the natural scale 5(x) = s(x) = x on (0,/) to adopt the
classification of the boundaries 0 and I’. We choose the intervals I’ and I as follows:

(1) If I’ is regular, there are three subcases related to the boundary condition as fol-
lows:

a. IfI' <l =oo, then! is called regular-reflecting and I' =1 = [0,1'].
b. If I’ <1 < oo, then !’ is called regular-elastic, I' = [0,!'] and I = [0,!'| U{{}.
c. IfI' =1 < oo, then !’ is called regular-absorbing, I' = [0,1) and I = [0,1].

(i) If /" is exit, then I’ =1 < oo, I' = [0,1) and I = [0,1].
(iii) If 7’ is entrance, then !’ =] =occand I' =1 = [0,0).
(iv) If 7' is natural, then I’ =1 < eoand I' =1 =[0,1).

We always write (X;),>¢ for the coordinate process on the space of paths o :
[0,00) = RU{d} with {(®) € [0,90) such that @ : [0, (®)) — R is continuous and
o(t) = d for all r > {(w). We always adopt the canonical representation for each
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process and the right-continuous filtration (% ),>¢ defined by % =\~ 0(Xy 1 u <
s).

We study a D,,Ds-generalized diffusion on I where O is the regular-reflecting
boundary (see Watanabe [28, Section 3]). Such a process can be constructed from
the Brownian motion via the time-change method. Let {(X;);>0, (P2)cr} denote
the Brownian motion on R and let £(z,x) denote its jointly-continuous local time. Set
A(t) = [;£(t,x)dm(x) and write A~! for the right-continuous inverse of A. Then the
process {(X;-1(;))r>0 (PB).c;} is a realization of the desired generalized diffusion.

Let M = {(X)s>0, (Px)xer} denote the D,,Ds-generalized diffusion. We denote
the resolvent operator of M by

R, f(x) =P, {/ eq’f(X,)dt} , q>0. 2.3)
0
For x € I, we write
T, =inf{t > 0: X, = x}. (2.4)
Then, for a,x,b € I with a < x < b, we have

X—a

E%(Yb:>7b)::b

(2.5)

Note that, whenever [ € I, we have P, (T} < o) = 1 forall x € I and [ is a trap for M.
For a function f : [0,/) — R, we define

1@ = [(a [ p@ame). 2.6)
J0 (0.y]

We sometimes write s(x) = x to emphasize the natural scale. For ¢ € C, we write ¢,
and y, for the unique solutions of the integral equations

‘Pq =1 +‘IJ¢q and V’q =S5+ q]lqu on [071)7 (27)
respectively. They can be represented as
0g=Y ¢ 7' and y =) 4. (2.8)
n=0 n=0

Let g > 0. Note that ¢, and y, are non-negative increasing functions. Set

N ORI A |
) =tm §I05 = | @2

Then there exist o-finite measures ¢ and ¢* on [0, ) such that

H(q)/[()lw)#o(dé) and HL:/ 1 s@e). 1o

q+¢ qH(q) Joe) g+&
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Note that

If we write m(oo) = limy_e m(x), we have

mo :=limgH (q) = o({0}) = = € [0,00). (2.12)
ql0 2.55)

Note that my = 0 whenever [ < . We define

Py(x) = @g(x) — ﬁq)wq(x). (2.13)

Then the function p, is a non-negative decreasing function on [0, /) which satisfies

N

oM qJp,. (2.14)

pg=1
We define

rg(x,y) = rg(v,x) = H(q)9g(x)pg(y) 0<x<y x,y€ I (2.15)

In particular, we have ry(0,x) = ry(x,0) = H(q)py(x) and r4(0,0) = H(q). It is
well-known (see, e.g., [13]) that

pe-ib] = B g s (2.16)

In particular, we have

=P,e 1], xel ¢>0. (2.17)

We write M’ = {(X;);>0, (P})xer } for the process M killed upon hitting [. We write
R’q for the resolvent operator of M’. It is well-known (see, e.g., [13]) that rq (x,y) is
the resolvent density of M’ with respect to dm, or in other words,

Ryf() = [ F05)ra(x)dm(y) 218
We have the resolvent equation
/[,rq(x,y)rp(y,Z)dm(y) = w, x,zel', q,p>0. (2.19)

If [ € I, we define
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rq(l,y)=0 foryelr, (2.20)
1

robel) == —Ri1(x) forxel, 2.21)
q
1

rg(l1) ==, (2.22)
q

and define a measure m on I by

m(dy) = 1p(y)dm(y) + &(dy). (2.23)
We emphasize that r,(x,y) is no longer symmetric when either x or y equals /.

Proposition 2.1 The formulae (2.16) and (2.18) extend to

Pyfe 5] ::q((’y‘ii . x,yel g>0, (2.24)
q\r»
Ryf (x) = /1 FO)rg(y)in(dy), xel, >0, (2.25)

Proof. Suppose [ € 1.

First, we let x = [. Then we have P;[e 40 =0 = :Zg;i% fory e I'and Pfe~9"] =

1 o -
1= 20 We also have Ry f(1) = B[ 57 e (X, )dt] = £(1)/q = f()rg(LDi({1}).
Hence we obtain (2.24) and (2.25) in this case.
Second, we assume x € I’. On one hand, we have

oo 1
/ e UB, (1 > T))dt = ~Pyle ") = r, (1, )P fe~7"1]. (2.26)
0 q

On the other hand, we have

- = 1
/ e P (1 > T,)dt:/ e {1—Py(X, € 1) }dr = = — R, 1(x) = ry (x,0).
0 0 q

(2.27)

Hence we obtain (2.24) for y = /. Using (2.18), we obtain
Ryf () =R, f () +£(1) [ "¢ "B(e > Tar 2.28)
= [ £Oraes)am) + fOr e Dm{). @29)

which implies (2.25). O
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3 The excursion measure away from 0

Fory € I, we write (L;(y));>0 for the local time at y normalized as follows (see [9]):

P, [/meq’dL,(y)] =ry(x,y), x€l,q>0. (3.1
0

We write L, for L;(0). Let n denote the excursion measure away from 0 correspond-
ing to (L;);>0 (see [1]), where we adopt the convention that

X, =0forallt > Ty, n-ae. (3.2)

We define the functional N, by

N,f=n V eq’f(Xt)dt} , g>0. (3.3)
Jo
Then it is well-known (see [22]) that n can be characterized by the following iden-
tity:

R,f(0)
r¢(0,0)

N,f = whenever f(0) = 0. 3.4

In particular, taking f = 15 0}, we have

n[l—e 1] = = 3.5

and, by (2.9), we have

1 1
n(Ty =) =lim—— = -. (3.6)
( )= E (9) 1
We write M = {(X;);>0,(PY)xes} for the process M stopped upon hitting 0 and
write R(q) for the resolvent operator of M°. By the strong Markov property of M, we
have

Ry f(x) = Ryf (x) + Pxle""PR, £ (0). (3.7)
The resolvent density with respect to r1(dy) is given as

rg(x,0)r4(0,y)

fi I 3.8
r2(0,0) orx,y € 3.8)

r(q)(xvy) = rf](xay) -

Note that r (x,y) = W, (x)p,(y) for x <y and that
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rg(x,y)  y(x)
Plle dh) = L2 = T°0 forx,yel,x<y. (3.9)
e rmy)  w(y)

Note also that (L;(y))s>0 is the local time at y such that

P! [/Ow eqzst(y)} = rg(x,y), x,y €I\ {0}, ¢ >0. (3.10)

The strong Markov property of n may be stated as
n[Fr Go 6r] = n[FrP% [G]] , (3.11)

where T is a stopping time, Fr is a non-negative .#r-measurable functional, G is a
non-negative measurable functional such that 0 < n[Fr] < oo or 0 < n[G o 07] < .
Let x,y € I be such that 0 < x < y. Because of the properties of excursion paths
of a generalized diffusion, we see that X under # hits y if and only if X hits x and in
addition X o 67, hits y. Hence, by the strong Markov property of n, we have,

n(Ty < o) =n({T; < o} 0 07, N {T; < o0}) (3.12)
=PY(T; < oo)n(Ty < o) (3.13)
=P, (T, < To)n(T < ) (3.14)

y

This shows that xn(7T; < ) equals a constant C in x € I\ {0}, so that we have
n(Tx<oo):g, x eI\ {0}. (3.16)
If [ € I, then we have
C=1In(T; <o) =In(Ty =) = 1. (3.17)
The following theorem generalizes this fact and a result of [4].

Theorem 3.1 (see also [4]) In any case, C = 1.

Theorem 3.1 will be proved at the end of Section 6.
The following lemma is the first step of the proof of Theorem 3.1.

Lemma 3.2 (see also [4]) The constant C may be represented as

C = limn[X,]. (3.18)
110

Proof. By definition of C, we have

C= sup xn(T; <oo). (3.19)
xel\ {0}
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Since n(t < Ty < o) T n(Ty <o) ast | 0, we have

C= sup xsupn(t < T, < ) (3.20)
xel\{0} >0
=sup sup xn(t < Ty < o) 3.21)
>0 xel\{0}
=lim sup xn(t < Ty < oo). (3.22)

110 xen{o}

Because of the properties of excursion paths of a generalized diffusion, we see that
X under n hits T after ¢ if and only if X does not hit x nor 0 until # and X o 6; hits x.
Hence, by the strong Markov property of n, we have,

sup xn(t < Ty <o) = sup xn({Ty <ew}obN{t<TyATH}) (3.23)
xel\{0} xel\{0}
= sup n[xPx, (Ty < Tp);t < Ty ATy] (3.24)
xel\{0}
= sup n[X;t <TATp. (3.25)
xel\{0}

We divide the remainder of the proof into three cases.
(i) The case I < oo. Since Ty < T for x € I'\ {0}, we have

(3.25) =n[X;;t < Ty ATy (3.26)
=n[X;;t <To|—n[X;T; <t <Tp). (3.27)

Since n(7; < o) < oo, we may apply the dominated convergence theorem to obtain

nX; Ty <t < To] < n[X;; T < oo ?0, (3.28)
t

which implies Equality (3.18), since n[X;;t < Ty] = n[X;].
(ii) The case I’ < [ = eo. The proof of Case (i) works if we replace [ by I’.
(iii) The case I’ = [ = oo. Since T | oo as x — oo, we have

(3.25) = lim n[X;;t < Ty ATy) = n[X;t < To (3.29)
X—00
by the monotone convergence theorem. This implies Equality (3.18). a

4 The renormalized zero resolvent

For g > 0 and x € I, we set

hy(x) =14(0,0) —ry(x,0). 4.1)
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Note that h,(x) is always non-negative, since we have, by (2.24),

hq(x)
H(q)

The following theorem asserts that the limit kg := limg| h, exists, which will be
called the renormalized zero resolvent.

=P,[1 —e 970]. (4.2)

Theorem 4.1 For x € I, the limit ho(x) := limg o hy(x) exists and is represented as
ho(x) = s(x) —g(x) = x - g(x), 4.3)

where
8() = mJ1(x) = 70 [ m(y)dy .4

The function ho(x) is continuous increasing in x € I, positive in x € I'\ {0} and zero
at x = 0. In particular, if my = 0, then hg coincides with the scale function, i.e.,
ho(x) = s(x) = x.

Proof. Forx € I', we have
hy(x) = H(@){1 = pg(x)} = x = gH(q)Ipg(x) 0 x =M J1(x),  (4.5)

where we used the facts that 0 < p,(x) < 1 and p,(x) — 1 — 7(= 1 if my > 0) as
q | 0 and used the dominated convergence theorem. If [ € I, we have

hy(l) = 14(0,0) = H(q) TS I, (4.6)

and hence we obtain h(!) = I, which shows (4.3) for x =/, since my = 0 in this case.

It is obvious that hg is continuous. If my = 0, then Ap(x) = x is increasing in
x € I and positive in x € I'\ {0}. If my > 0, then we have mom(y) < 1 forally € I
and mom(y) < 1 for all y < !, so that h(x) is increasing in x € I and positive in
x € I'\ {0}. The proof is now complete. O

Example 4.2 Let 0 < I’ <[ = oo and let m(x) = min{x,l'}. In this case, M is a
Brownian motion on [0,1'] where both boundaries 0 and I are regular-reflecting.
Then we have

21 | mx x?

hi(x) = ?sin— ho(x) =X o

i xe0,l]. 4.7)

Note that we have y = 1/m() = 1/1' and
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_ COSh\/qX forx S [071/]7 4.8

¢q(x) {¢q(l/)+¢(g(l/)(xll) fOFxE(l/,oo)7 ( . )

_ Jsinh\/gx/ /g forxe0,l'], 49

i {wq(l’)+ W) 1) forxe (o), “
1

We study recurrence and transience of 0.

Theorem 4.3 For M, the following assertions hold:
(i) O is transient if and only if | < oo. In this case, it holds that

]PX(Tozoo):§ forxel. @.11)

(ii) 0 is positive recurrent if and only if my > 0. In this case, it holds that

ho(x)

PX[TO] = T

forxel. (4.12)

(iii) 0 is null recurrent if and only if | = o and 7y = 0.

Although this theorem seems well-known, we give the proof for completeness of
the paper.
Proof. (i) By the formula (2.16), we have, for x € I’,

Py(Th = o0) = limPy[1 —e 4% zlim{wq(x) — x)—1 }:f (4.13)
(T = o) = {1 —e~ %] = limy 0%~ {00 =1} =
Hence 0 is transient if and only if / < eo. If x =1 € I, it is obvious that P;(Th = o0) = 1.
This proves the claim.
(ii) Since (1 —e™™)/x 71 as x | 0, we may apply the monotone convergence
theorem to see that
hg(x) ho(x)

1
P.[Ty] = lim =P, [1 —e 90] = lim —L2_ = 4.14
[ T0) qlf'(}q o[l —e 1] qu(}ql’q(0,0) % (4.14)

for x € I. This shows that Py [Tp] < e if and only if my > 0, which proves the claim.
(iii) This is obvious by (i) and (ii). O
We illustrate the classification of recurrence of 0 of Theorem 4.3 as follows:
|l =0 |l < oo
7o = 0}|(1) null recurrent (3) transient
7o > 0]|(2) positive recurrent{impossible
(1) ' is type-1-natural.
(2) I is type-2-natural, entrance or regular-reflecting.
(3) I is type-3-natural, exit, regular-elastic or regular-absorbing.
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5 Various conditionings to avoid zero

We prove the three theorems concerning conditionings to avoid zero. We need the
following lemma in later use.

Lemma 5.1 For any stopping time T and for any x € I, it holds that
PY[X7; T < oo] < x. (5.1

Proof. By [2, Proposition I1.2.8], it suffices to prove that PO[X;] < x for all > 0.
Note that x < liminf, o PY[X,] for all x € I by Fatou’s lemma. By the help of [2,
Corollary I1.5.3], it suffices to prove that

PY[X7,; Tk < oo] <x forxecI\K (5.2)

for all compact subset K of 1.

Let K be a compact subset of 7 and let x € I\ K. Let a = sup(K N (0,x)) U {0}
and b = inf(K N (x,1)) U{l}. Since 0 and [ are traps for P, we have Tx = T, AT, on
{Tx < =}, P%-a.e. and thus we obtain

P (X7 s T < o] < PUX7n7;] = aPo(T, < Tp) + P (T, > T) = x, (5.3)

which proves (5.2) for x ¢ K. Hence we obtain the desired result. O
First, we prove Theorem 1.1.

Proof of Theorem 1.1. (i) Suppose that I'(= [) is entrance or natural. By the strong

Markov property, we have

an[FT;T <T; < To] :a]Px[FTPXT(Ta < To);T <T; N To] 5.4)
=P, [FTXT; T<T, N T()] (5.5
=PY[FrXp:T < T, (5.6)

since X7 =0 on {T > Ty}, PV-a.s. By the fact that Lirery = Yrco)s P0-a.s. and by
Lemma 5.1, we may thus apply the dominated convergence theorem to see that (5.6)
converges as a | [ to PU[FrXr; T < . Since alP(T, < Ty) = x, we obtain (1.2).

(ii) Suppose that I’ is regular-elastic, regular-absorbing or exit. By the strong
Markov property, we have

I]P)X[FT;T <T < T()] ZI]PX[FT]P)XT (Tl < To);T <TIA T()] 5.7
=PY[FrXr;T < T)). (5.8)

Since P,(7T; < Tp) = x/1, we obtain (1.2).
(iii) In the case where [’ is regular-reflecting, the proof is the same as (ii) if we
replace [ by I, and so we omit it. a
Second, we prove Theorem 1.2.
Proof of Theorem 1.2. By McKean [17] (see also [29]), we have the following facts.
For y € R, let y, be the solution of the integral equation Yy = s+ ¥J . Then we
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have the eigendifferential expansion

)= [ @0 Wm0 (59

for the spectral measure 6. We now have

P.(Ty € dr) / » n(Tp € dt) /
o ed) ¢ o(dy), 10=_ e”0(dy), (5.10
i Jiewo) ¥y(x)6(dy) o o) (dy), (5.10)
and, for r > 0,
lim PaTo>1) _ he(x), lim n(fo>r-r) e T 5.11)

1—o0 n(To >l‘) 1—0o0 n(T() >l‘)

We note that % equals the supremum of the support of 6 and that i, =y, . If I’ is
natural, exit, regular-absorbing or regular-elastic, we see that . =0 and &, = s.
By the strong Markov property, we have

PuFr:T <t < To) =PY[Fr P, (Ty >t —r)|,_;:T <t]. (5.12)
Since we have

1
n(To >1) >n(T, < Ty, Tyo g, >1) = ;IP),(TO >1), (5.13)

we have Py(Tp >t —r) <yn(Tp >t —r). Hence, by Lemma 5.1 and by the dominated
convergence theorem, we obtain

lim —— P [Fr:T <t < Tyl =P [Fre *Th, (X7): T < . 5.14
s T <1 <ol el Fre " he(Xr)iT < o] (>.14)

Dividing both sides of (5.14) by those of the first equality of (5.11), we obtain (1.3).

O
Third, we prove Theorem 1.3.
Proof of Theorem 1.3. By (4.2), we have
H(q)Py(eq < Tp) = hg(x) — ho(x). (5.15)

ql0

Note that
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PX[FT;T <ey < To] =P, |Fr /T ]{,<T0}C]thdt:| (5.16)
:Px FTCiqT / 1{t+T<TO}qeqtdt:| (5]7)
L Jo
=P [Fre e, + T < Tp) (5.18)
—P.[Fre T 1o, 1y 0 0:T < TO} . (5.19)

By the strong Markov property, we have

H(q)P[Fr;T < eq < To] =H(q)P:[Fre " Px, (eg < Ty): T < Ty (5.20)
=PY[Fre 9" hy(Xr); T < o], (5.21)

since hy(X7) = 0 on {T > Ty}, PY-a.s. Once the interchange of the limit and the
integration is justified, we see that (5.21) converges as g | 0 to PO[Frho(X7); T < ),
and hence we obtain (1.4).

Let us prove hy(x) <xforg>0andx e [.Ifx € I', we use (2.14) and we have

hq(x) = H(q){1 —py(x)} =x—qH(q)Jpy(x) < x. (5.22)

If I € I, we have hy(l) = H(gq) < I. We thus see that the integrand of (5.21) is domi-
nated by X7. By Lemma 5.1, we thus see that we may apply the dominated conver-
gence theorem, and therefore the proof is complete. a

6 Invariance and excessiveness

Let us introduce notation of invariance and excessiveness. Let & be a non-negative
measurable function on E.

(i) We say h is a-invariant for M° (resp. for n) (@ € R) if e *PU[h(X;)] = h(x)
for all x € E and all ¢+ > 0 (resp. there exists a positive constant C such that
e~ %n[h(X;)] = C forall t > 0).

(ii) We say h is a-excessive for M? (resp. for n) (o > 0) if e~ *PU[h(X;)] < h(x) for
all x € E and all t > 0 and e~ *PY[h(X;)] — h(x) as t | O (resp. there exists a
positive constant C such that e~ *n[h(X;)] < C for all t > 0 and n[h(X;)] — C as
t]0).

(iii)) We say h is invariant (resp. excessive) when h is O-invariant (resp. 0-excessive).
We give the following remarks.

(i) As acorollary of Theorem 1.2, the function 4, is Y.-invariant for MO,
(i) As a corollary of (i), the function s is invariant for M® when I for M is natural,
exit, regular-absorbing or regular-elastic.
(iii) As a corollary of Lemma 5.1, the function s is excessive for M° when [’ for M is
entrance or regular-reflecting.
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(iv) As acorollary of Theorem 1.3, the function A is excessive for MP.

In this section, we prove several properties to complement these statements.
Following [8, Section 2], we introduce the operators

Dof(x) = lim LE+8) —f

eelom(x+¢€)—m(x

- )
— g )
whenever the limit exist. Note that f(x) = y,(x) (resp. f(x) = p,(x)) is an increas-

ing (resp. decreasing) solution of the differential equation D,,Dsf = qf satisfying
f(0) =0and Dsf(0) =1 (resp. f(0) =1 and D, f(0) = —1/H(q)).

Theorem 6.1 The function h, is Yi-invariant for n when ' for M is entrance or
regular-reflecting.

6.1)

Proof. By [7, Section 12]), we see that if D,,D;f = F and D,,Ds;g = G then
Dy {gDsf — fDsg} = gF — fG. (6.2)
Hence we have

(6] - 7*)‘[’7* Pg = Dm{‘l’y* Dqu - Pqu Yy, } . (6.3)

Integrate both sides on I’ with respect to dm, we obtain

(=) [ v @)py)dm(x) = 1. (64

where we used the facts that p,(0) = 3, (0) = 1, v, (0) =y, (I') = 0, yy, (I') < o0
and p,(I") = 0. This shows that

Rh.(0) e
= [ pav (am() = (6.5)

q—Y«
Hence we obtain e %*'n[h,(X;)] = 1 for a.e. t > 0. For 0 < s < 1, we see, by the
Y.-invariance of A, for MO, that

Nh, =

e Fnlh(X,)] = e [Py [he (X y)]] = e P nlh. (X,)], (6.6)

which shows that  — e~ %*'n[h,(X;)] is constant in # > 0. Thus we obtain the desired
result. a
For later use, we need the following lemma.

Lemma 6.2 For 0 < p < g, it holds that

Pg(¥)wp(y)dm(y) < (6.7)

(0.) H(q)(q—p)

Consequently, it holds that Ry y,(x) < ee.
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Proof. Letx < ['. Using the fact that Pp > 0 and the resolvent equation, we have

/(o,x] Pa()¥p(y)dm(y) < /(O,X] Pa(VH (p)p(v)dm(y) 6.8)
Sm /1 rq(0,3)rp (v, x)dm(y) (6.9)

e e (6.10)

—H<q>;r)i(<?c’>)<€)qp> - H(S(f ’ P’ ©.11)

Letting x T/, we obtain (6.7). 0

We compute the image of the resolvent operators of 4.
Proposition 6.3 For g > 0 and x € I, it holds that

//l()(x) rq (X,O) o

Ryho(x) = + -=, (6.12)
q 0( ) q q qz
h

RYho(x) = o) _ 1(2’113;[1 —e 4N, (6.13)
g q
1 o

Nyho =— — ———. (6.14)

g ¢H(q)

Proof. Supposex € I'. Let 0 < p < ¢/2. On one hand, by the resolvent equation, we
have

Ryhy(x) =r,(0,0) /1 rg(x,y)i(dy) — /, rq(%,y)rp(y,0)m(dy) (6.15)
_p(0,0)  rp(x,0) —r4(x,0) (6.16)

q q9—Dp
_ ) N rg(x,0)  pH(p) (6.17)

- —. (6.18)
pl0 g q q

On the other hand, for y € I’, we have

hp(y) =H(Pp){1=pp(»)} = v () —H(P){$p(») = 1} < ¥yp(y).  (6.19)

By Lemma 6.2, we see by the dominated convergence theorem that R,h,(x) —
R,ho(x) as p | 0. Hence we obtain (6.12) forx € 1.
Suppose [ € I and x = [. Then we have

qR4ho(l) = qho(l)ry(1,m({1}) = ho(1), (6.20)
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which shows (6.12) for x = [, since r4(1,0) = 0 and my = 0 in this case. Thus we

obtain (6.12). Using (3.7), (3.4), (6.12) and (2.24), we immediately obtain (6.13)

and (6.14). O
We now obtain the image of the transition operators of Ay.

Theorem 6.4 Fort > 0 and x € I, it holds that
5
PRl (X)) =ho(x) = | Puls < To)ds, (621)

n[ho(X;)] 17r0./0‘tds./[. m)e*f%*(dé;). (6.22)

Consequently, for MO and n, it holds that hy is invariant when my = 0 and that hy is
excessive but non-invariant when my > 0.

Proof. By (6.13), we have

hox) _ o

Rohon
aho(x) q q .

/ e TPyt < To)dt, (6.23)
0
which proves (6.21) for a.e. ¢ > 0. By Fatou’s lemma, we see that P[h(X;)] < ho(x)
holds forall # > 0 and all x € I. For 0 < s < t, we have

PYlho(X,)] = PL[PY, [ho(X,—)]] < PY[ho(X,)]. (6.24)

This shows that 7 — P?[h(X;)] is non-increasing. Since the right-hand side of (6.21)
is continuous in ¢ > 0, we see that (6.21) holds for all # > 0.
By (6.14), we have

1 o 1

Nhg =— — — ——o*(d (6.25)
TG g Jowy g+ E (45)
_Im / dre=a / e 't 6" (dE), (6.26)
q q Jo J10,%0)

which proves (6.22) for a.e. t > (0. For 0 < s < ¢, we have
nlho(X:)] = n [P, [ho(Xi—)]] < nlho(Xy)], (6.27)

from which we can conclude that (6.22) holds for all # > 0. a

We have already proved that s is invariant for M° and n when 7y = 0. We now
study properties of s in the case where my > 0. In the case I'(= o) is entrance,
the measure P denotes the extension of M starting from I’ constructed by a scale
transform (see also Fukushima [10, Section 6]).

Theorem 6.5 Suppose my > 0. Then the following assertions hold:

(i) If I is type-2-natural, then the scale function s(x) = x is invariant for M® and n.
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(ii) Ifl' is entrance or regular-reflecting, then, for any ¢ > 0 and any t > 0,

X X
Ros(x) =% - ¥y, (629)
q q
1
Nys ==Py[1 —e 4T0], (6.29)
q
n[X;] =Py (t < Tp), (6.30)
where
Py [e~4T0] if ' for M is entrance,
Kall) = {l{ i (l’)} if I for M is regular-reflectin 6.3
g\ v Pa 8 8
Consequently, s(x) = x is excessive but non-invariant for M° and n.
Proof. By (2.14), we have, forx € I,
1
pl(x) = ———+¢q pq(y)dm(y). (6.32)
q( ) H(q) (0.4 f]( ) ( )
Since I’ = I when 7y > 0, we have
[ pul)amy) = < Ry1(0) = — (639
y)dm(y) = —— =—. .
Jr™ H(q) * qH (q)

We write pg(I') = lim,; pg(x). Recalling g is defined by (4.4) and using (6.33), we
obtain

l/

Nyg=m [ dem(x /I,\ oy PIIEO) (6.34)
:7% Ol,dxm(x)pé(x) (6.35)
=2 [anty) [ piaye (636)
:%Ipmwwﬂwfww» (637)
B e (©39)

(i) If I’ is type-2-natural, then, by [12, Theorem 5.13.3], we have p, (/') = 0. By
(6.14), we obtain N,s = 1/q. Since t — n[X;] is non-decreasing, we obtain n[X;] = 1
for all £ > 0. We thus conclude that s is invariant for n. The invariance of s for M°
has already been remarked in the beginning of this section.

(i) We postpone the proof of (6.28) until the end of the proof of Theorem 7.5.
Let us prove (6.29) and (6.30).



20 Kouji Yano and Yuko Yano

If I’ is regular-reflecting, we have p,(I') = Py[e~4%]. If I’ is entrance, then we
may take limit as x T I’ and obtain

pg(l') :=1im py(x) = lim P, [e~770] = Py~ (6.39)

X xT1l

(see Kent [14, Section 6]). Since mym (o) = 1, we obtain
1 00
Nys = Nyho +Ngg = - Pu[1 — e=1h] = / e Py (t < Ty)dt. (6.40)
0

This proves (6.29) and n[X;| = Py(r < Tp) for a.e. t > 0. Since t — Py(r < Tp) is
continuous (see Kent [14, Section 6]) and by Lemma 5.1, we can employ the same
argument as the proof of Theorem 6.4, and therefore we obtain (6.30).

Suppose that s were invariant for M°. Then we would see that n[X;] = n[P§ [X, ]] =
n[X;] for 0 < s < ¢, which would lead to the invariance of s for n. This would be a
contradiction. O

Remark 6.6 An excessive function h is called minimal if, whenever u and v are
excessive and h = u—+v, both u and v are proportional to h. It is known (see Salminen
[23]) that s is minimal. We do not know whether hg is minimal or not in the positive
recurrent case.

We now prove Theorem 3.1.
Proof of Theorem 3.1. In the case where my = 0, we have ho(x) = x by Theorem
4.1. Hence, by Theorem 6.4, we see that n[X;] — 1 as ¢t | 0, which shows C =1 in
this case.

In the case where 7y > 0, we obtain C = 1 by Theorem 6.5 and Lemma 3.2. The
proof is therefore complete. O

7 The h-transforms of the stopped process

We study A-transforms in this section. For a measure p and a function f, we write
fu for the measure defined by fi(A) = [, fdu.

Since A, is Y.-invariant, there exists a conservative strong Markov process M’ he —
{(X,)s>0, (P*)xer} such that

% (X
it*ehi(gt)ﬁg on.% fort >0andx €1\ {0}, (7.1)
«(x
Py =e "'h(X,)n on % fort > 0. (7.2)

We set

e (x) = /(le] h()2(dy), s (x) = / : hdy (7.3)
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where 0 < ¢ < I’ is a fixed constant, We define, for g > 0,

rgsy. (4,7)
gt f X, cl 0,
Dy 4 Wrg) RS (1.4

rq+}’*(07y
et DY) g x—=0andy e 1\ {0},
H09)r sy (0,0) 0y

Then, we see that rZ* (x,y) is a density of the resolvent Rg* for M.

Theorem 7.1 For M", the following assertions hold:

(i) For g > 0, (])q* = W’;—ty" (resp. Pyt = pqh%) is an increasing (resp. decreasing)
solution of D, Do, f = qf satisfying f(0) =1 and D . f(0) =0 (resp. f(0) =oo
and D g, f(0) = —1).
(i) M" is the D, . D . -diffusion.
(iii) O for M" is entrance.
(iv) ' for M is entrance when I for M is entrance;
U' for M" is regular-reflecting when ' for M is regular-reflecting.

Proof. (i) For g € R and for any function & such that D,,Dsh exists, we see that

Vgra) _ 1 21 (Vata
Dthsh( h )_hZD’"{h DS( h )} (7.5)
1
:ﬁDm{hDs‘I/qua - ‘I/quotDsh} (76)
Dﬂ’lDS
:(q+oc— . h) Vore, (1.7)

Taking i = h, and o = ¥,. we obtain D, . Dg. ¢ = qq)qh*. In the same way we
obtain D, ;. D, p;‘* = qp;‘*. The initial conditions can be obtained easily.

Claims (ii) and (iii) are obvious from (i).

(iv) Suppose that I’ for M is entrance or regular-reflecting. Then &, is bounded,
so that I/ for M" is of the same classification as I’ for M. Since M"* is conservative,
we obtain the desired result. O

We now develop a general theory for the A-transform with respect to an exces-
sive function. Let o > 0 and let 4 be a function on / which is a-excessive for
MY and n which is positive on 7\ {0}. Then it is well-known (see, e.g., [5, The-
orem 11.9]) that there exists a (possibly non-conservative) strong Markov process
M" = {(X,)i>0, (P")xes} such that

n_ € "h(Xi) o
1{,<C}IP’X_WIPX on.% fort >0andx €I\ {0}, (7.8)
Ly<gy PG = “h(X,)n on.Z fort > 0. (7.9)

We note that M" becomes a diffusion when killed upon hitting [ if [ € I. If ot > 0,
we see by [5, Theorem 11.9] that the identities (7.8) and (7.9) are still valid if we
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replace the constant time ¢ by a stopping time 7 and restrict both sides on {7 < eo}.
We set

Yo d
h 2~ h y
m'(x) = h(y) m(dy), s"(x)= / , 7.10
(= [ P, = [ e (1.10)
where 0 < ¢ < I’ is a fixed constant, We define, for ¢ > 0,
0. (x,
, Z?O;i;();) forx,y € I'\ {0},
= X)ny 7.11
rq(xvy) rq+a(0,y) ( )

————=— forx=0andyel\{0}.
h()’)"qﬂx(ovo) Y \{ }

Then, we see that 7/ (x,y) is a density of the resolvent R? for M.

Lemma 7.2 Suppose that h(x) < W 14 (x) for all > 0 and all x € I. Define L (y) =
L,(y)/h(y)? fory € I\ {0}. Then the process (L!'(y));>¢ is the local time at y for M"
normalized as

| [Cematt| = A, weryen (o (7.12)
0
It also holds that
ra(x,)
Pile=db] = L2 xel, yel\{0}. (7.13)
L] (y,y) \o}

Proof. Since P! is locally absolutely continuous with respect to P?, we see that
(L!(y))i>0 is the local time at y for M". Let x,y € I\ {0}. For u > 0, we note that
Mu(y) = inf{z > 0: L,(y) > u} is a stopping time and that X;, () = y if 1. (y) < ce.
Let 0 =up < uj <...<uy, Then, by the strong Markov property, we have

T )

Tlu-()’) ] _
Pﬁ:[ ! f(r)dLﬂy)] = szle 1e; 0)

My () h(x)h(y) f(t)st()’)] ;o (7.14)

nuH )

in fact, we have (7.14) with restriction on {1y, (y) < Tex} and then we obtain (7.14)
by letting € | 0. Hence, by the monotone convergence theorem, we obtain
#| [ rwarto)] = s [Ce @ pan )| @a9)
1o ' h(x)h(y)"* [Jo el '
Letting f(z) = e~ %, we obtain (7.12) for x € I'\ {0}.
Letx=0andy €I\ {0}. For p > 0, we write e, for an independent exponential
time of parameter p. By the strong Markov property, we have

Pl [ /e weqde?(y)] =P} {efqep,fql(xep,y) : (7.16)

)4
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On one hand, we have

(7.16) <IPg [rg(xep,y)} :P/[’Z(O,X)r’;(x,y)m"(dx) (7.17)
:ﬁ'{r’é(w)*rﬁ(ow)},:orZ(O,y). (7.18)

On the other hand, since we have h(x) < y,1q(x), we have

h[a—gqep. Pyraly) h
(7.16) >Ph[e °rse, < T, O r4(0,y). (7.19)
By the monotone convergence theorem, we obtain (7.12) for x = 0.
Using (7.12) and using the strong Markov property, we obtain

i BlEenao)] Ay
Bl = B eeaatio)] Ao

This shows (7.13). a

(7.20)

Theorem 7.3 For M®, i.e., the h-transform for h = s, the following assertions hold:

(i) For g > 0, (])éY = % (resp. pg = %) is an increasing (resp. decreasing) solu-

tion of DysDgs f = qf satisfying f(0) = 1 and Dy f(0) = 0 (resp. f(0) = co and
Dy £(0) = —1).

(ii) M® is the D,,s Dss-diffusion.

(iii) O for M® is entrance.

(iv) U for M? is of the same classification as ' for M when I’ < oo, i.e., I' for M is exit,
regular-absorbing, regular-elastic or type-3-natural;
" for M® is type-3-natural when I’ for M is natural;
I for M* is exit when I'(= =) for M is entrance with [ x*dm(x) = oo
I for M* is regular-absorbing when I'(= ) for M is entrance with [° x*dm(x) <

' for M® is regular-elastic when I’ for M is regular-reflecting.

Proof. Claim (i) can be obtained in the same way as the proof of (i) of Theorem 7.1.
Claims (ii) and (iii) are obvious from (i).
(iv) Suppose I’ for M is exit, regular-absorbing or regular-elastic. Then we have
I < oo, and hence it is obvious that I’ for M°® is of the same classification as I’ for M.
Suppose !’ for M is natural. Then we have

and
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» Y Y . T
: S(v) — 11 - .

.//l/>y>x>cds (x)dm®(y) -/l’>y>c<C y>y dm(y) > /l,>y>26ydm(y)
(7.22)

Thus we see that [’ for M* is natural. Since s*(I') = 1/c —1/I' < o, we see that I
for M? is type-3-natural.
Suppose I'(= o) for M is entrance. Then we have

S et = [ )+ efmie) i)} <o (129

In addition, we have

(A S ) — 11) ,

which is finite if and only if [°x?dm(x) is finite.

Suppose !’ for M is regular-reflecting. Then it is obvious that I’ for M* is regular.
Since M* has no killing inside [0,/’) and since M* is not conservative, we see that
M has killing at I’. Since we have

P3(T, < {) = %P?(Tx <) = ; <1 forallx</, (7.25)

we see that M* has killing at I’. Thus we see that I’ for M* is regular-elastic. O

Remark 7.4 When I’ = o and [ . x*dm(x) < o, the left boundary o is called
of limit circle type. See Kotani [15] for the spectral analysis involving Herglotz
functions.

Theorem 7.5 Suppose I’ for M is entrance or regular-reflecting. For M°, it holds
that

Bl = Y5 1), g>0.xer\ (o), (7.26)

where x4(1') is given by (6.31).

Proof. Suppose [’ is entrance. Then we have

P le~4%] = HimPS [e—5] = fim . ¥4 (1.27)
de ™) v e X Yy(y)
By [12, Theorem 5.13.3], we have
. y T 1 _ N —qTy
lim =lim =py(l") =Pyle”90]. (7.28)

VI W (y) 1 ()

Suppose (= ) is regular-reflecting. Then we have
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S1a—q81 8 [a—qT s [2—4C ’";(xvll).lo /
Pile™ %] =Pile” 7' |P)[e” %] 0 l/Rqs(l) (7.29)
_Wx) Py(l) .
= ) /(o,l/] W, (x)xdm(x). (7.30)

Since Dy { W (x)x — Wy (x)} = qWy(x)x, we obtain

1 1 I
X)xdm(x) = ={y' (INI' - 14 :—{ — l’}. (7.31)
sy Yol = {0 =y} = 4 S =)
Thus we obtain (7.26). a
We now give the proof of (6.28).
Proof of (6.28). Note that

' o bl 1
I—Ple %] =g / dre PS¢ > 1) =2 / dre"PO[X,] = ~qR)s(x). (7.32)
0 X JO X

Combining this fact with (7.26), we obtain (6.28). O

Theorem 7.6 For M™, i.e., the h-transform for h = hy, the following assertions
hold:

(i) Forq >0, (])qh0 = ‘;{—Z (resp. pgo = Z—Z) is an increasing (resp. decreasing) solution
of D, wyDyy f = qf satisfying f(0) =1 and D 4, f(0) = 0 (resp. f(0) = e and
Dshof(()) =—1).

(ii) M" is the D, ny D gy ~diffusion with killing measure Z—gdmho.

(iii) 0 for MM is entrance;
(iv) ' for M" is natural when I for M is type-2-natural;
I' for M is entrance when ' for M is entrance;
I' for M is regular when ' for M is regular-reflecting.

(For the boundary classifications for diffusions with killing measure, see, e.g., [13,
Chapter 4].)

Proof. Claim (i) can be obtained in the same way as the proof of (i) of Theorem 7.1.

(i1) For f = Z—g or f = ’;—Z, we have

(Dmhoosho _ Z—(‘;) f=af, (7.33)

since D,,;Dshy = —my. This shows (ii).

Claim (iii) is obvious from (i).

(iv) Suppose !’ for M is type-2-natural. Then it is obvious that lim pg" (x)=0.
Since we have Dy, {hop; — pghy} = (qho + 7o) pg, we have

DyuPfe(x) = (hop — Py () = ~1+ [ (aho(e) + m)py(9am(x). (734
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Hence, by Proposition 6.3, we obtain

1
ETrlr}DshO P (x) = —1+ WRq(qho +)(0) =0. (7.35)
Thus we see that I/ for M"0 is natural.
Suppose !’ for M is entrance. Note that
h x n n
ox) _ x/ dm(z) +/ zdm(z). (7.36)
To (x,00) (04]

Since we have [ ) zdm(z) < co, we see that

o) = limho(x) = 7 /( () <o (7.37)

This shows that I’ for M" is of the same classification as I’ for M.
The last statement is obvious. O

Remark 7.7 General discussions related to Theorems 7.3 and 7.6 can be found in
Maeno [16], Tomisaki [27] and Takemura [26].
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