460 research outputs found
The Energy of a Plasma in the Classical Limit
When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and
d_{T}, the distance of closest approach of thermal electrons, a classical
analysis of the energy of a plasma can be made. In all the classical analysis
made until now, it was assumed that the frequency of the fluctuations \omega <<
T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the
energy of a plasma, allowing the frequency of the fluctuations to be arbitrary.
We find that the energy density is appreciably larger than previously thought
for many interesting plasmas, such as the plasma of the Universe before the
recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let
Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes
In semiconductor manufacturing, contamination due to particulates
significantly decreases the yield and quality of device fabrication, therefore
increasing the cost of production. Dust particle clouds can be found in almost
all plasma processing environments including both plasma etching devices and in
plasma deposition processes. Dust particles suspended within such plasmas will
acquire an electric charge from collisions with free electrons in the plasma.
If the ratio of inter-particle potential energy to the average kinetic energy
is sufficient, the particles will form either a liquid structure with short
range ordering or a crystalline structure with long range ordering. Otherwise,
the dust particle system will remain in a gaseous state. Many experiments have
been conducted over the past decade on such colloidal plasmas to discover the
character of the systems formed, but more work is needed to fully understand
these structures. The preponderance of previous experiments used monodisperse
spheres to form complex plasma systems
Axion Emission from Red Giants and White Dwarfs
Using thermal field theory methods, we recalculate axion emission from dense
plasmas. We study in particular the Primakoff and the bremsstrahlung processes.
The Primakoff rate is significantly suppressed at high densities, when the
electrons become relativistic. However, the bound on the axion-photon coupling,
GeV, is unaffected, as it is constrained by the evolution of HB
stars, which have low densities. In contradistinction, the same relativistic
effects enhance the bremsstrahlung processes. From the red giants and white
dwarfs evolution, we obtain a conservative bound on the axion-electron
coupling, .Comment: 17 pp, 3 PS figures, CERN-TH-7044/9
Application of a new screening model to thermonuclear reactions of the rp process
A new screening model for astrophysical thermonuclear reactions was derived
recently which improved Salpeter's weak-screening one. In the present work we
prove that the new model can also give very reliable screening enhancement
factors (SEFs) when applied to the rp process. According to the results of the
new model, which agree well with Mitler's SEFs, the screened rp reaction rates
can be, at most, twice as fast as the unscreened ones.Comment: 8 RevTex pages + 7 ps figures. (Revised version). Accepted for
publication in Journal of Physics
Dusty Plasma Correlation Function Experiment
Dust particles immersed within a plasma environment, such as those in
protostellar clouds, planetary rings or cometary environments, will acquire an
electric charge. If the ratio of the inter-particle potential energy to the
average kinetic energy is high enough the particles will form either a "liquid"
structure with short-range ordering or a crystalline structure with long range
ordering. Many experiments have been conducted over the past several years on
such colloidal plasmas to discover the nature of the crystals formed, but more
work is needed to fully understand these complex colloidal systems. Most
previous experiments have employed monodisperse spheres to form Coulomb
crystals. However, in nature (as well as in most plasma processing
environments) the distribution of particle sizes is more randomized and
disperse. This paper reports experiments which were carried out in a GEC rf
reference cell modified for use as a dusty plasma system, using varying sizes
of particles to determine the manner in which the correlation function depends
upon the overall dust grain size distribution. (The correlation function
determines the overall crystalline structure of the lattice.) Two dimensional
plasma crystals were formed of assorted glass spheres with specific size
distributions in an argon plasma. Using various optical techniques, the pair
correlation function was determined and compared to those calculated
numerically.Comment: 6 pages, Presented at COSPAR '0
Plasma Oscillations and Expansion of an Ultracold Neutral Plasma
We report the observation of plasma oscillations in an ultracold neutral
plasma. With this collective mode we probe the electron density distribution
and study the expansion of the plasma as a function of time. For classical
plasma conditions, i.e. weak Coulomb coupling, the expansion is dominated by
the pressure of the electron gas and is described by a hydrodynamic model.
Discrepancies between the model and observations at low temperature and high
density may be due to strong coupling of the electrons.Comment: 4 pages, 4 figures. Accepted Phys. Rev. Let
Dislocation-Mediated Melting: The One-Component Plasma Limit
The melting parameter of a classical one-component plasma is
estimated using a relation between melting temperature, density, shear modulus,
and crystal coordination number that follows from our model of
dislocation-mediated melting. We obtain in good agreement
with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe
Plasma formation from ultracold Rydberg gases
Recent experiments have demonstrated the spontaneous evolution of a gas of
ultracold Rydberg atoms into an expanding ultracold plasma, as well as the
reverse process of plasma recombination into highly excited atomic states.
Treating the evolution of the plasma on the basis of kinetic equations, while
ionization/excitation and recombination are incorporated using rate equations,
we have investigated theoretically the Rydberg-to-plasma transition. Including
the influence of spatial correlations on the plasma dynamics in an approximate
way we find that ionic correlations change the results only quantitatively but
not qualitatively
Free streaming in mixed dark matter
Free streaming in a \emph{mixture} of collisionless non-relativistic dark
matter (DM) particles is studied by implementing methods from the theory of
multicomponent plasmas. The mixture includes Fermionic, condensed and non
condensed Bosonic particles decoupling in equilibrium while relativistic, heavy
non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple
\emph{out of equilibrium} when they are relativistic. The free-streaming length
is obtained from the marginal zero of the gravitational
polarization function, which separates short wavelength Landau-damped from long
wavelength Jeans-unstable \emph{collective} modes. At redshift we find ,where are the \emph{fractions} of the respective DM components of mass
that decouple when the effective number of ultrarelativistic degrees of
freedom is , and only depend on the distribution functions at
decoupling, given explicitly in all cases. If sterile neutrinos produced either
resonantly or non-resonantly that decouple near the QCD scale are the
\emph{only} DM component,we find (non-resonant), (resonant).If WIMPs with
decoupling at are present in the mixture with
, is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM
component its free streaming length is consistent with CDM because of the
infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results.
Version to appear in Phys. Rev.
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
- …
