2,469 research outputs found
The one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is
replaced by a non-local operator, namely the fractional diffusion with exponent
. We prove some features related to the classical
two-dimensional Keller-Segel system: blow-up may or may not occur depending on
the initial data. More precisely a singularity appears in finite time when
and the initial configuration of cells is sufficiently concentrated.
On the opposite, global existence holds true for if the initial
density is small enough in the sense of the norm.Comment: 12 page
The quest for companions to post-common envelope binaries: I. Searching a sample of stars from the CSS and SDSS
As part of an ongoing collaboration between student groups at high schools
and professional astronomers, we have searched for the presence of
circum-binary planets in a bona-fide unbiased sample of twelve post-common
envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan
Digital Sky Survey (SDSS). Although the present ephemerides are significantly
more accurate than previous ones, we find no clear evidence for orbital period
variations between 2005 and 2011 or during the 2011 observing season. The
sparse long-term coverage still permits O-C variations with a period of years
and an amplitude of tens of seconds, as found in other systems. Our
observations provide the basis for future inferences about the frequency with
which planet-sized or brown-dwarf companions have either formed in these
evolved systems or survived the common envelope (CE) phase.Comment: accepted by A&
The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout
A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built
as a shashlik lead-scintillator calorimeter with wave length shifter fiber
readout. Before installation it was tested and calibrated using the X5 test
beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in
the momentum range of 10 to 100 GeV/c were used. Results of these measurements
are presented as well as a calibration monitoring system based on a Co
source.Comment: 38 pages (Latex); 26 figures (ps
Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity
High impulsivity is an important risk factor for addiction with evidence from
endophenotype studies. In addiction, behavioral control is shifted toward the
habitual end. Habitual control can be described by retrospective updating of
reward expectations in ‘model-free’ temporal-difference algorithms. Goal-
directed control relies on the prospective consideration of actions and their
outcomes, which can be captured by forward-planning ‘model-based’ algorithms.
So far, no studies have examined behavioral and neural signatures of model-
free and model-based control in healthy high-impulsive individuals. Fifty
healthy participants were drawn from the upper and lower ends of 452
individuals, completing the Barratt Impulsiveness Scale. All participants
performed a sequential decision-making task during functional magnetic
resonance imaging (fMRI) and underwent structural MRI. Behavioral and fMRI
data were analyzed by means of computational algorithms reflecting model-free
and model-based control. Both groups did not differ regarding the balance of
model-free and model-based control, but high-impulsive individuals showed a
subtle but significant accentuation of model-free control alone. Right lateral
prefrontal model-based signatures were reduced in high-impulsive individuals.
Effects of smoking, drinking, general cognition or gray matter density did not
account for the findings. Irrespectively of impulsivity, gray matter density
in the left dorsolateral prefrontal cortex was positively associated with
model-based control. The present study supports the idea that high levels of
impulsivity are accompanied by behavioral and neural signatures in favor of
model-free behavioral control. Behavioral results in healthy high-impulsive
individuals were qualitatively different to findings in patients with the same
task. The predictive relevance of these results remains an important target
for future longitudinal studies
Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil
Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350°C and 450°C, corresponding to pressures of ~20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 450°C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-ρ-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil
Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration
Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB
Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion
For a specific choice of the diffusion, the parabolic-elliptic
Patlak-Keller-Segel system with non-linear diffusion (also referred to as the
quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold
phenomenon: there is a critical mass such that all the solutions with
initial data of mass smaller or equal to exist globally while the
solution blows up in finite time for a large class of initial data with mass
greater than . Unlike in space dimension 2, finite mass self-similar
blowing-up solutions are shown to exist in space dimension
Critical dynamics of self-gravitating Langevin particles and bacterial populations
We study the critical dynamics of the generalized Smoluchowski-Poisson system
(for self-gravitating Langevin particles) or generalized Keller-Segel model
(for the chemotaxis of bacterial populations). These models [Chavanis & Sire,
PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading
to the Tsallis statistics. The equilibrium states correspond to polytropic
configurations with index similar to polytropic stars in astrophysics. At
the critical index (where is the dimension of space),
there exists a critical temperature (for a given mass) or a
critical mass (for a given temperature). For or
the system tends to an incomplete polytrope confined by the box (in a
bounded domain) or evaporates (in an unbounded domain). For
or the system collapses and forms, in a finite time, a Dirac peak
containing a finite fraction of the total mass surrounded by a halo. This
study extends the critical dynamics of the ordinary Smoluchowski-Poisson system
and Keller-Segel model in corresponding to isothermal configurations with
. We also stress the analogy between the limiting mass of
white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial
populations in the generalized Keller-Segel model of chemotaxis
Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity
Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever
Microevolution of extensively drug-resistant tuberculosis in Russia.
Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72%belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted. © 2012 by Cold Spring Harbor Laboratory Press
- …
