122 research outputs found

    Protein-crystal growth experiment (planned)

    Get PDF
    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth

    Crosstalk between Mitochondrial and Sarcoplasmic Reticulum Ca2+ Cycling Modulates Cardiac Pacemaker Cell Automaticity

    Get PDF
    Mitochondria dynamically buffer cytosolic Ca(2+) in cardiac ventricular cells and this affects the Ca(2+) load of the sarcoplasmic reticulum (SR). In sinoatrial-node cells (SANC) the SR generates periodic local, subsarcolemmal Ca(2+) releases (LCRs) that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+)-Ca(2+) exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP).To determine if mitochondrial Ca(2+) (Ca(2+) (m)), cytosolic Ca(2+) (Ca(2+) (c))-SR-Ca(2+) crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+) influx into (Ru360) or Ca(2+) efflux from (CGP-37157) decreased [Ca(2+)](m) to 80 ± 8% control or increased [Ca(2+)](m) to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+) influx or efflux, the SR Ca(2+) load, and LCR size, duration, amplitude and period (imaged via confocal linescan) significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+) signal were highly correlated with the change in the SR Ca(2+) load (r(2) = 0.97). Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control) in response to changes in [Ca(2+)](m) were predicted by concurrent changes in LCR period (r(2) = 0.84).A change in SANC Ca(2+) (m) flux translates into a change in the AP firing rate by effecting changes in Ca(2+) (c) and SR Ca(2+) loading, which affects the characteristics of spontaneous SR Ca(2+) release

    Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling

    Get PDF
    Activation of afferent nerves during urinary bladder (UB) filling conveys the sensation of UB fullness to the central nervous system (CNS). Although this sensory outflow is presumed to reflect graded increases in pressure associated with filling, UBs also exhibit nonvoiding, transient contractions (TCs) that cause small, rapid increases in intravesical pressure. Here, using an ex vivo mouse bladder preparation, we explored the relative contributions of filling pressure and TC-induced pressure transients to sensory nerve stimulation. Continuous UB filling caused an increase in afferent nerve activity composed of a graded increase in baseline activity and activity associated with increases in intravesical pressure produced by TCs. For each ∼4-mmHg pressure increase, filling pressure increased baseline afferent activity by ∼60 action potentials per second. In contrast, a similar pressure elevation induced by a TC evoked an ∼10-fold greater increase in afferent activity. Filling pressure did not affect TC frequency but did increase the TC rate of rise, reflecting a change in the length-tension relationship of detrusor smooth muscle. The frequency of afferent bursts depended on the TC rate of rise and peaked before maximum pressure. Inhibition of small- and large-conductance Ca(2+)-activated K(+) (SK and BK) channels increased TC amplitude and afferent nerve activity. After inhibiting detrusor muscle contractility, simulating the waveform of a TC by gently compressing the bladder evoked similar increases in afferent activity. Notably, afferent activity elicited by simulated TCs was augmented by SK channel inhibition. Our results show that afferent nerve activity evoked by TCs represents the majority of afferent outflow conveyed to the CNS during UB filling and suggest that the maximum TC rate of rise corresponds to an optimal length-tension relationship for efficient UB contraction. Furthermore, our findings implicate SK channels in controlling the gain of sensory outflow independent of UB contractility

    Electrostatic solitary waves associated with magnetic anomalies and wake boundary of the Moon observed by KAGUYA

    Get PDF
    We present observations of electrostatic solitary waves (ESWs) near the Moon by SELENE (KAGUYA) in the solar wind and in the lunar wake. SELENE is a lunar orbiter with an altitude of 100 km and measured wave electric field, background magnetic field, and fluxes of ions and electrons, etc. ESWs are categorized into three types depending on different regions of observations: ESWs generated by electrons reflected and accelerated by an electric field in the wake boundary (Type A), strong ESWs generated by bi-streaming electrons mirror-reflected over the magnetic anomaly (Type B), and ESWs generated by reflected electrons when the local magnetic field is connected to the lunar surface (Type C). ESWs of Type C often alternate with Langmuir waves
    corecore