61 research outputs found

    Ionization dynamics in expanding clusters studied by XUV pump probe spectroscopy

    Get PDF
    he expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x ray extreme ultraviolet XUV pulses were studied with pump probe spectroscopy using the autocorrelator setup of the Free Electron LASer in Hamburg FLASH facility. The ionization by the first XUV pulse of 92 eV photon energy 8 1012 W cm amp; 8722;2 leads to the generation of a large number of quasi free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe 4 1013 W cm amp; 8722;2 pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1 3 p

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump-x-ray-probe spectroscopy

    Get PDF
    Citation: Lehmann, C. S., Picon, A., Bostedt, C., Rudenko, A., Marinelli, A., Moonshiram, D., . . . Southworth, S. H. (2016). Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump-x-ray-probe spectroscopy. Physical Review A, 94(1), 7. doi:10.1103/PhysRevA.94.013426The capability of generating two intense, femtosecond x-ray pulses with a controlled time delay opens the possibility of performing time-resolved experiments for x-ray-induced phenomena. We have applied this capability to study the photoinduced dynamics in diatomic molecules. In molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay mode is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wave packets of the transient two-valence-hole states continue evolving on the femtosecond time scale, leading either to separated atomic ions or long-lived quasibound states. By using an x-ray pump and an x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N-2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and the time evolution of the nuclear wave packets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasibound states

    Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    Get PDF
    Citation: Picon, A., Lehmann, C. S., Bostedt, C., Rudenko, A., Marinelli, A., Osipov, T., . . . Southworth, S. H. (2016). Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics. Nature Communications, 7, 6. doi:10.1038/ncomms11652New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site

    Structures and orientation-dependent interaction forces of titania nanowires using molecular dynamics simulations

    Get PDF
    Engineering nano wires to develop new products and processes is highly topical due to their ability to provide highly enhanced physical, chemical, mechanical, thermal and electrical properties. In this work, using molecular dynamics simulations, we report fundamental information, about the structural and thermodynamic properties of individual anatase titania (TiO2) nanowires with cross-sectional diameters between 2 and 6 nm, and aspect ratio (Length: Diameter) of 6:1 at temperatures ranging from 300 to 3000 K. Estimates of the melting-transition temperature of the nanowires are between 2000 and 2500 K. The melting transition temperature predicted from the radial distribution functions (RDFs) shows strong agreement with those predicted from the total energy profiles. Overall, the transition temperature is in reasonable agreement with melting points predicted from experiments and simulations reported in the literature for spherical nanoparticles of similar sizes. Hence, the melting-transition temperature of TiO2 nanowires modelled here can be considered as shape independent. Furthermore, for the first time based on MD simulations, interaction forces between two nanowires are reported at ambient temperature (300 K) for different orientations: parallel, perpendicular, and end-to-end. It is observed that end-to-end orientations manifested the strongest attraction forces, while the parallel and perpendicular orientations, displayed weaker attractions. The results reported here could form a foundation in future multiscale modelling studies of the structured titania nanowire assemblies, depending on the inter-wire interaction forces
    • …
    corecore