1,591 research outputs found

    A high resolution scintillating fiber tracker with SiPM readout for the PEBS experiment

    Get PDF
    Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.250mm diameter. The fibers are read out by four SiPM arrays (8mm x 1mm) e ach on either end of the module.Comment: 6 pages, 5 figures, presented at the ICATPP 1

    Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity

    Get PDF
    Low-dimensional descriptions of neural network dynamics are an effective tool for bridging different scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for networks of coupled oscillators have sparked the development of a new generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and applications. These extensions include different forms of short-term adaptation (STA) considered to play an important role in generating and sustaining dynamic regimes of interest in the brain. It is an open question, however, whether the incorporation of pre-synaptic forms of synaptic plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same method. Here, we discuss this problem using an established model of short-term synaptic plasticity at the single neuron level, for which we present two different approaches for the derivation of the mean-field equations. We compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate description of the network dynamics, although they are mathematically more involved. Using bifurcation analysis, we find that QIF networks with pre-synaptic short-term plasticity can express regimes of periodic bursting activity as well as bi-stable regimes. Together, we provide novel insight into the macroscopic effects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for future investigations of such networks

    A Scintillating Fiber Tracker With SiPM Readout

    Full text link
    We present a prototype for the first tracking detector consisting of 250 micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The detector has a modular design, each module consists of a mechanical support structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins. Five layers of scintillating fibers are glued to both top and bottom of the support structure. SiPM arrays with a channel pitch of 250 micron are placed in front of the fibers. We show the results of the first module prototype using multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as 32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron +/- 6 micron at an average yield of 10 detected photons per minimal ionizig particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08

    Using field trips in engineering education to facilitate the understanding of energy systems and technologies: an overview

    Get PDF
    Can field trips provide a more efficient way of teaching energy systems and technologies at the university level? This paper provides an overview of how field trips could be used to teach students the fundamentals and complexities of energy systems and energy technologies. It contains an overview of learning objectives related to the UN Sustainable Development Goal 7 (clean and affordable energy) as well as teaching methods that could be used during a field trip programme. This paper uses the findings of five weeklong field trips for university students as a case study to shed light on the benefits of such an educational experience. These visits included visits to production sites, governmental and corporate stakeholders of the energy system in different regions in Germany. The paper then proposes a schedule for a multiple-day field trip and suggests a general programme in four categories (political institutions, production sites, civil society and research institutions) for a better understanding of energy systems and technologies

    On the role of arkypallidal and prototypical neurons for phase transitions in the external pallidum

    Get PDF
    The external pallidum (GPe) plays a central role for basal ganglia functions and dynamics and, consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons. Using bifurcation analysis, we examine the influence of the intra-pallidal connectivity on the GPe dynamics. We find that under healthy conditions, the inhibitory coupling determines whether the GPe is close to either a bi-stable or an oscillatory regime. Furthermore, we show that oscillatory input to the GPe, arriving from subthalamic nucleus or striatum, leads to characteristic patterns of cross-frequency coupling observed at the GPe. Based on these findings, we propose two different hypotheses of how dopamine depletion at the GPe may lead to phase-amplitude coupling between the parkinsonian beta rhythm and a GPe-intrinsic gamma rhythm. Finally, we show that these findings generalize to realistic spiking neural networks of sparsely coupled type-I excitable GPe neurons

    Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Full text link
    A silicon photomultiplier (SiPM) array has been developed at FBK-irst having 32 channels and a dimension of 8.0 x 1.1 mm^2. Each 250 um wide channel is subdivided into 5 x 22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved

    A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout

    Full text link
    We present prototype modules for a tracking detector consisting of multiple layers of 0.25 mm diameter scintillating fibers that are read out by linear arrays of silicon photomultipliers. The module production process is described and measurements of the key properties for both the fibers and the readout devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20 detected photons per minimum ionizing particle have been achieved, at a tracking efficiency of more than 98.5%. Possible techniques for further improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in Nuclear Instruments and Methods in Physics Research Section A, Vol. 62

    Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems.

    Get PDF
    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats

    High-spin parity doublets in the nucleus 151 Pm

    Get PDF
    The high-spin-level structure of the nucleus 151Pm has been investigated by in-beam γ-ray spectroscopy using the 150Nd(α, p2N) 151Pm reaction. The observed enhanced E1 transitions with B(E1) of the order of 10-3 W.u. and parity doubling, both features characteristic of a reflection-asymmetric mean field, suggest an octupole deformation in 61151P
    • …
    corecore