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Low-dimensional descriptions of spiking neural network dynamics are an effective tool for bridg-
ing different scales of organization of brain structure and function. Recent advances in deriving
mean-field descriptions for networks of coupled oscillators have sparked the development of a new
generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all cou-
pled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and
applications. These extensions include different forms of short-term adaptation (STA) considered
to play an important role in generating and sustaining dynamic regimes of interest in the brain. It
is an open question, however, whether the incorporation of pre-synaptic forms of synaptic plasticity
driven by single neuron activity would still permit the derivation of mean-field equations using the
same method. Here, we discuss this problem using an established model of short-term synaptic
plasticity at the single neuron level, for which we present two different approaches for the derivation
of the mean-field equations. We compare these models with a recently proposed mean-field approx-
imation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce
the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We
show that the mean-field models we propose provide a more accurate description of the network
dynamics, although they are mathematically more involved. Using bifurcation analysis, we find
that QIF networks with pre-synaptic short-term plasticity can express regimes of periodic bursting
activity as well as bi-stable regimes. Together, we provide novel insight into the macroscopic ef-
fects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field

descriptions for future investigations of such networks.

I. LOW-DIMENSIONAL MANIFOLDS OF
SPIKING NEURAL NETWORK ACTIVITY

The brain can generate a variety of highly complex
and chaotic patterns of neural activity [I]. However,
given the vast number of neurons in the brain, these
patterns appear to be less complex than they could be
theoretically, indicating a high level of neuronal redun-
dancy [2, [3]. Electrophysiological recordings of macro-
scopic neural activity have revealed highly stereotyped
responses to sensory stimulation as well as strongly syn-
chronized regimes of neural activity [4H7]. More recently,
multi-unit recordings have demonstrated that strong re-
dundancies are present at the level of spiking neurons
as well [8 @]. These findings indicate the existence of
low-dimensional manifolds in the state space of the brain
that typically govern its neural dynamics and its response
to extrinsic stimulation. The identification and descrip-
tion of such low-dimensional manifolds has been a central
topic of neuroscientific research for many years [TOHT5].
Different approaches for the derivation of mathematical
descriptions of the temporal evolution of low-dimensional
neural activity have been proposed [16]. Among those are
classic neural mass models that use direct, phenomeno-
logical descriptions of macroscopic measures of neural dy-
namics [I7H21]. For these neural mass models, equivalent
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spiking neural networks do not exist in general. Other ap-
proaches make use of probabilistic descriptions of the evo-
lution of the collective behavior inside a neural popula-
tion [22H24], which make it possible to capture the statis-
tics inside the spiking neural network up to a certain or-
der. However, some of these approaches are restricted to
asynchronous regimes of neural activity [22] 23], whereas
others use approximations of random fluctuations in the
spiking neural network [24]. Hence, neither of these ap-
proaches provide a mathematically exact set of mean-
field equations that can describe the macroscopic dynam-
ics of a spiking neural network in general.

The Ott-Antonsen ansatz has provided a new tool to
derive mean-field models of spiking neural networks [25].
While originally devised for networks of all-to-all cou-
pled Kuramoto oscillators [26], it has since been applied
to networks of theta neurons [27, 28], and, most relevant
to this study, to networks of all-to-all coupled quadratic
integrate-and-fire (QIF) neurons [29]. For future appli-
cations of this method, it is of interest to know how well
the derivation of the mean-field equations generalizes to
other descriptions of neural dynamics than the particu-
lar QIF networks considered in [29]. Consequently, dif-
ferent extensions of the QIF model have been proposed
that added biophysical mechanisms or structural details
to the model in order to explain interesting neurody-
namic phenomena, such as the onset of synchronized
neural activity [30H34]. Particularly interesting are ex-
tensions that include dynamic variables which are not
driven by the mean-field activity of the network, but by
neuron- or synapse-specific processes instead. In such
cases, it is unclear whether mean-field equations can still
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be found. In [34], the QIF network was extended by a
spike-frequency adaptation mechanism, where a neuron-
specific adaptation current was elicited by the spiking
activity of the same neuron. Thus, the adaptation vari-
able was not simply driven by the mean-field activity of
the network. To derive the mean-field equations nonethe-
less, the authors applied an adiabatic approximation to
the adaptation dynamics. This approximation assumes
that the adaptation variable evolves slowly in compari-
son to the membrane potential dynamics and permits one
to apply the mean-field derivation on the fast time-scale.
Based on this mean-field model it will be possible to in-
vestigate the effects of neuron-specific currents at meso-
and macroscopic scales, such as for example the effects
of calcium-dependent spikes on thalamic dynamics [35]
or the effects of spike-frequency adaptation on cortical
microcircuits [36].

In this work, we address the question of whether ex-
act mean-field equations can be derived for QIF net-
works with synapse-specific dynamic variables. Synap-
tic dynamics are especially interesting for the computa-
tional modeling of macroscopic neurodynamic phenom-
ena. This is because synaptic currents are thought to
trigger the potential changes visible in macroscopic elec-
trophysiological recordings of brain activity, and differ-
ent synapse types come with different dynamic charac-
teristics that are pivotal for our understanding of brain
dynamics. Classic neural mass models, for example, typ-
ically use different synaptic time scales to model rhythm
generation in the brain [I8] 20, 2T]. The QIF mean-field
reduction generalizes to any convolution of the synaptic
input with a synaptic response kernel [29, B0] and, hence,
allows one to derive mean-field descriptions of QIF net-
works with standard descriptions of synaptic dynamics
such as the alpha kernel convolution [20] 21]. However,
given appropriate stimulation, synaptic dynamics also
undergo short-term plasticity (STP) that changes prop-
erties of the synaptic response. It has been shown that
synapses can express short-term depression and facilita-
tion and that time scales and strengths of these two STP
forms differ between synapse and neuron types. More-
over, synaptic STP has been linked to various functions
and dynamic properties of the brain, such as working
memory [37] or operating in a critical regime [38]. A gen-
eralization of the above discussed mean-field approaches
to neural networks with synaptic STP would thus provide
a valuable tool for modeling brain dynamics and function
at the meso- and macroscopic level.

Here, we discuss the descriptions of synaptic STP that
are allowed for in the context of deriving Ott-Antonsen
manifolds for heterogeneous QIF networks. Recent work
has demonstrated that mean-field equations can be de-
rived for QIF networks with synaptic STP if two condi-
tions are satisfied [34]: First, each time a neuron spikes
in the network, it triggers synaptic STP at every other
neuron, which is the case in all-to-all coupled networks.
Second, a single incoming spike triggers synaptic STP
at all synapses of a neuron. Under those conditions,

synaptic STP is no longer neuron specific and can sim-
ply be treated as a macroscopic variable driven by the
mean-field activity of the network. This form of synap-
tic STP could be used to model forms of post-synaptic
receptor desensitization, short-term changes in the num-
ber of available post-synaptic receptors, or resource de-
pletion at the post-synaptic complex. Importantly, it
cannot be considered to represent pre-synaptic forms of
plasticity, such as vesicle depletion. While the first as-
sumption would still hold for pre-synaptic STP in all-to-
all coupled QIF networks, the second assumption would
not. Pre-synaptic resource depletion cannot be assumed
to affect all network connections, but only the efferent
connections of a specific neuron (see Fig. |1)).
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FIG. 1. Pre- vs. Post-Synaptic Forms of Short-Term Plastic-
ity. Nodes represent neurons in an all-to-all coupled network
and edges between the nodes represent bidirectional synaptic
couplings. Red nodes are active, i.e. did just spike, whereas
blue nodes have not spiked for a sufficient period in time.
Edges that are colored in red show adaptation in response
to the activity of the red nodes, whereas grey edges do not.
The two equations describe the membrane potential evolu-
tion of a QIF neuron for the cases of pre- and post-synaptic
plasticity. Note that the adaptation variable A; is specific for
pre-synaptic source neurons for the former case, and specific
to post-synaptic target neurons for the latter.

A well established model of pre-synaptic STP is the
phenomenological model introduced in [39], which de-
scribes the dynamics of pre-synaptic facilitation and de-
pression. We will discuss the derivation of mean-field
equations for QIF networks with pre-synaptic STP with
respect to this model, though we will discuss the impli-
cations of our findings for general descriptions of pre-
synaptic STP dynamics as well. In the following sec-
tion, we define the microscopic model under considera-
tion. This will be followed by sections in which we dis-
cuss different approaches to derive equations for the low-
dimensional network dynamics. While we do not find
the exact mean-field equations for QIF networks with
pre-synaptic STP, we provide two different approxima-
tions that match well with the QIF network dynamics.
We point to the problems that would have to be solved
in future attempts at an exact mean-field derivation and



evaluate the accuracy of our approximate solutions via
numerical simulations and bifurcation analysis.

II. LOW-DIMENSIONAL MANIFOLDS OF QIF
NETWORKS WITH STP

We consider a network of IV all-to-all coupled QIF neu-
rons with pre-synaptic STP
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where eq. represents a convolution of the spiking
activity of neuron ¢ with a synaptic response kernel a,
e.g. in the case of exponential synapses a(t) = e~/ /7,
with synaptic time scale 7,. A neuron i emits its k"
spike at time tf when it reaches a threshold Vy upon
which V; is reset to V., = —V,. Without loss of gener-
ality, we consider the limit 74 — 0, such that S; rep-
resents the spiking activity of neuron 7. Eq. and
eq. (Lc) resemble the pre-synaptic STP mechanism de-
scribed in [39]. We note here that -~ denotes a quantity
just before a spike occurs (left limit), and - denotes a
quantity just after the neuron spiked (right limit). This
discontinuity accounts for the biological fact that a pre-
synaptic spike triggers synaptic facilitation before it can
affect the post-synaptic neuron, by moving vesicles closer
to the membrane. Synaptic depression, however, results
from the consumption of vesicles for the synaptic trans-
mission process and is thus affected slightly later than
synaptic facilitation. We assume neural spiking activity
to affect all outgoing synapses of a neuron equally, hence
X; and U; can be considered as neuron- and not synapse-
specific. The adaptation dynamics are controlled by the
depression and facilitation time constants 7,, and 7, a
depression strength «, and a baseline synaptic efficacy
Up. Eq. describes the evolution of the membrane
potential V; of neuron i, which depends on a background
excitability parameter 7;, an extrinsic forcing term I(t),
the membrane time constant 7, and the coupling with
the network activity. The latter is given by a sum over
the output S; of each neuron in the network, weighted
by a global coupling strength J, and the neuron-specific
synaptic depression X; and facilitation Us;.

In the limit Vy — oo, the membrane potential V; of a
QIF neuron can be directly related to its phase via the
transform V; = tan(%). Under this transformation,
represents a network of theta neurons [40], which can
be considered a network of globally coupled oscillators.
Thus, the network satisfies the conditions for the exis-
tence of the Ott-Antonsen manifold, a low-dimensional

manifold along which the network dynamics are guar-
anteed to evolve for N — oo [25, @I]. This manifold
can be described for by following the Lorentzian
ansatz described in [29], i.e. by making the assumption
that the state variables V; are distributed according to a
Lorentzian where the probability density of V' for back-
ground excitability n at time ¢ is given by

_1 z(n, 1)
VI = =y P+ 2 0 ®

The center y(n,t) and half-width-at-half-maximum
(HWHM) z(n,t) of eq. are associated with the mean
firing rate r(n,t) and the membrane potential average
over all neurons v(n, t) via z(n,t) = mr(n,t), and y(n,t) =
v(n, t), respectively. Due to the conservation of the num-
ber of neurons, the network dynamics obey the following
continuity equation:
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where reg = % Zjvzl X i U ;_Sj is the effective mean-field
network activity that arrives at each neuron. By inserting
eq. ([2) into eq. it can be shown that the dynamics of

z(n,t) and y(n,t) obey
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for any 7, with w(n,t) = 2(n, t)+iy(n,t). Without synap-
tic STP, i.e. for U(t) = X(t) = 1, eq. can be solved
for certain choices of the background excitability distri-
bution. The most drastic reduction in the dimensionality
of the system can be achieved by choosing a Lorentzian
distribution with density function

1 A

g(n) = ;m,

where 77 and A represent the center and HWHM of the
distribution, respectively. This choice allows one to solve

(5)
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using the residue theorem of complex analysis, i.e. by
evaluating the integral at the two poles of g(w) given by
7 + ¢A. Subsequently, eq. can be solved for r and v,
yielding

T = — 4+ 2rv, (7a)
T
7o =v* 4+ 7+ I(t) + Jrr — (7r7)?, (7b)
where we additionally used reg = & Zjvzl S;=r.
However, for non-constant X and U, solving eq.

for r and v becomes a non-trivial problem. In this case,
N _
et = % 21 X; U;S; # r and, hence, reg must be



calculated to arrive at closed-form equations for r and
v. Two major problems have to be solved in this re-
gard: (a) The effective network input reg has to be ex-
pressed via mean-field variables such as the average firing
rate r and average depression and facilitation variables x
and wu. If this cannot be done, the mean-field equations
would still contain neuron-specific variables, thus increas-
ing their dimensionality dramatically. (b) The mean-field

. . 1 N
equations for the average depression z = + > ;—; X; and

facilitation u = & Zfil U; have to be solved. However,
the evaluation of these sums requires one to solve the
coupled, non-linear differential equations and ,
which only has been achieved for stationary network in-
put so far [39]. In the following section, we will address
problem (b) and compare our results with recently pro-
posed mean-field equations for a similar synaptic STP
model [42]. The remainder of this article will address
different attempts to solve problem (a).

IIT. ANALYTICAL SOLUTIONS FOR
MICROSCOPIC STP

As argued in the previous section, finding closed-
form mean-field equations for the system given by equa-
tions requires one to calculate the average depression
T =4 Zfil X; and average facilitation u = % Zfil Ui
across neurons. We start by considering neuron ¢ that
spikes periodically with a period 7T, thus producing a
spike train S;(t) = >_o° ___ 6(t — nT;). The inter-spike
interval T; corresponds to a firing rate of 1/7;. In this
scenario, solutions for the microscopic STP variables can
be obtained analytically [39]. The evolution equations for
synaptic short-term depression X; and short-term facili-
tation U; are given by eq. and eq. , respectively.
For the remainder of this section, we will omit the neuron
index ¢ for brevity. The (relative) strength of a synapse
is given by 0 < UT X~ < 1. We denote U by U,; just be-
fore the corresponding neuron emitted its n*" spike, and
by U,F just after the n'" spike. Solving the homogeneous
part of the model equation, we obtain

U1 =Uo+ (U = Up) exp(=T/7u), (8)
and the change of U due to a spike is found to be

These expressions can be reformulated into the following
iteration scheme:

Ui =Uo+ (1= Uo)(Uo + (U — Up)e™T/),

n
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For the depression variable X, we find the following set
of equations:

X =1+ (1 -aUhHX, —1)e 1/,
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(11a)
(11b)

In the stationary case, i.e. in the absence of transient
dynamics, stationary solutions U}t = U,F, U, = U, and
X, =X, , Vn can be found:
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It is interesting to note that these results differ from the
results when the firing rate is assumed to be a constant,
i.e. when S; = 1y = const. In this case, we set U = X =
0, and obtain

Uy + Ugtyro
Uy=——7+7—7—, 13
].+ U()Tu’f'o ( a)
1
X, = 13b
1+ ar,U*rg ( )

where we have made use of U = U = U,, as well as

X} = X; = X, since spike times are irrelevant. The
spike and rate description can be compared by equating
To = ]./T

In figure[2] we compare these solutions for varying firing
rates. As can be seen, the results for constant firing rates
ro are more closely related to the adaptation variables
before spikes than after spikes. This shows that it does
matter for microscopic STP whether exact spike timings
and the time of evaluation of U and X are considered or
not, a finding which we expect to hold for non-stationary
firing rates S(t) as well.

The expressions derived above can be used to evaluate
the mean-field quantities z and wu, if the spike times or
firing rates of all neurons are known. Alternatively, they
can be used to evaluate reg directly. In the following
sections, we will address the problem of evaluating reg
to derive the mean-field equations for equations . We
will derive two different mean-field models, for which the
results of this section will be used to refine the mean-field
descriptions of the pre-synaptic STP dynamics. In this
context, we will evaluate how eq. vs. eq. ((13)) affect
the mean-field dynamics of the QIF network.

IV. MEAN-FIELD DERIVATION UNDER A
POISSONIAN ASSUMPTION OF NEURAL
DYNAMICS

Recently, an approach for the derivation of a mean-
field model for the system defined by egs. has been
presented in [37]. The authors used a mean-field approx-
imation of macroscopic quantities x and u, averaged over
all neurons in the network, that has been proposed in
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FIG. 2. Comparison of the microscopic adaptation variables before and after spikes for discrete spikes, and for constant firing
rates ro. The inter-spike interval T is varied. The constant firing rate is expressed as ro = 1/7T. Parameters: a = 0.1, Uy = 0.2,

T2 = 50.0, 7, = 20.0.

[42). In this article, a mean-field approximation of the
effective network input

N
1 e
Teg(t) = NZU]. X s;, (14)
j=1

is derived, where X" and U;" are given by eq. and
eq. (|Ld), respectively, with the modification that U;r is
replaced by U;~. Whereas the original STP model formu-

lation described in [39] uses U ;rX ; as the effective weight
of a synapse at the time of an incoming spike, Schmutz
et al. use U; X, instead [42]. As shown in Fig. ,
these two choices can lead to substantial differences of
the synaptic weight for small input rates. Since an ef-
fective synaptic weight of U: X is also used in [37], we
will discuss the validity of their mean-field description for
both the spiking neural network given by eq. (1)) and the
spiking neural network considered in [37]. Henceforth,
we will refer to the former as SNNy,,, and to the latter as
SNNpyre II. Under the assumption that all S; follow inde-
pendent Poisson processes, the effective network input in
SNNyre IT is approximated by reg ~ u(t)z(t)r(t), where
r(t) is the average firing rate across neurons at time ¢.
As explained in [42], this mean-field approximation rests
on two assumptions: (I) Synapse indices can be random-
ized, i.e. the spike times matter, but not the synapses at
which those spikes occur. (II) The average impact of a
spike on X; and Uj;, Vi can be approximated by sampling
from Gaussian distributions around the current values of
x and u. A first-order mean-field approximation is then
given by

(15a)
(15Db)

T, =1—x — arzur,
Tt = Uy —u~+ Upry (1 — w)r.

As can be seen from these equations, both x and u are
driven by the average firing rate r = % Z;vzl S; of the
QIF network. This allows to one to apply the Lorentzian
ansatz in the same way as demonstrated for post-synaptic
depression in [34]. The dynamics of the complex variable

w(n,t) can be expressed as

1
= + Jzur], (16)

and by evaluating eq. at mr(t) +iv(t) = w(n—iA,t)
one finds that the dynamics of r and v follow:

(17a)
(17b)
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We will refer to the set of mean-field equations given by
and as FREpgisson where FRE stands for firing
rate equations.

It is important to notice, however, that FREpgisson can-
not be considered exact. While assumption (I) holds for
a network of independent, homogeneous Poisson neurons
(hence called Poissonian assumption), it does not hold
in general [42]. Therefore, the mean-field derivation es-
sentially approximates a heterogeneous network of de-
terministic QIF neurons by a homogeneous network of
stochastic Poisson neurons. Furthermore, the first-order
approximation given by eq. and eq. ignores
the non-linear interaction between X; and U; in eq. .
As shown in [42], considering second order dynamics
can improve the accuracy of the mean-field approxima-
tion, especially in the vicinity of transient inputs to the
network. Adding second-order dynamics would involve
sampling from a multivariate Gaussian distribution over
(z,u), however. This means that the mean-field deriva-
tion could not be considered deterministic and, hence,
also not exact anymore.

Still, it has been shown in [37] that FREpoisson can ac-
curately describe the mean-field dynamics of SNNp, II
under certain conditions. To test whether this holds in
general, we compared the dynamics of the two models for
three different STP parametrizations, leading to synapses
that are either depressing, facilitating, or depressing and
facilitating. We solved the initial value problem of both
sets of equations via an explicit Euler formalism with
an integration step-size of dt = 0.0001. This step-size



was sufficiently small to capture the dynamics of the
network and was used for all subsequent numerical in-
tegration problems as well. We then applied rectangular
input pulses to the models and observed their dynamic
responses around these inputs. The resulting time series
can be observed in Fig.[3] For purely depressing synapses,
we find that there is a substantial mismatch between the
mean-field dynamics of SNNy,; I and FREpoigson. As can
be seen in Fig. for the average depression x, there is
a considerable offset between the mean-field model (or-
ange) and the average of X; evaluated across neurons in
the QIF network (black). With respect to purely facili-
tating synapses, we find that the mean-field model pro-
vides a reasonable approximation of the QIF network.
Even though offsets can be observed between the mean-
field model and the QIF network (see dynamics of v in
Fig. ), the qualitative behavior of the QIF network is
captured well by the mean-field model. This holds both
in the steady-state regimes and during transient behavior
around the on- and offsets of the input I(t). In the case
of synapses with short-term depression and facilitation,
the mean-field model expresses a substantial mismatch to
the QIF network dynamics again. For example, Fig.
shows that the dynamics of the average firing rate r ex-
press focus dynamics for FREpgisson after the onset of the
first stimulus, whereas the average firing inside SNNc
II does not show such behavior. In the upper row of
Fig. [3] we show the evolution of the distribution over the
combined synaptic state X;U; in the microscopic model.
We find that this distribution tends to express multi-
modalities in regions with a strong mismatch between
mean-field and microscopic model. These results sug-
gest that the mean-field model can approximate the low-
dimensional dynamics of the QIF network only if X; and
U, express uni-modal, narrow distributions. This finding
makes intuitive sense, since the mean-field approxima-
tion of the dynamics of U; and X; given by eqs. (L5
represents a first order approximation. Our results con-
firm that this approximation only performs well if the
mean over X; and U; contains much information about
the actual underlying distributions. Thus, by providing
these counter examples, we have shown that the mean-
field model resulting from the Poisson assumption does
not provide an exact mean-field description of the QIF
network.

Since we are actually interested in the mean-field equa-
tions for SNNp.e given by egs. (1), we now examine
whether FREp,isson can nonetheless provide an approx-
imation of SNNp,. under some conditions. To gain fur-
ther insight into the relationship between the mean-field
equations and the QIF network, we asked whether there
exists a QIF network description for which the mean-field
model given by can be considered
exact. Indeed, such a network exists and is easy to find.
Since z and u are only driven by the mean-field firing rate
r, we can just introduce microscopic variables U; and X;
that enter the microscopic evolution equation for v; in
the same was as the macroscopic evolution equation for

v ((17b)) and are also driven by the mean-field activity
of the QIF network:
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where s = r is the mean firing rate across all neurons
in the network. Apart from the description of the STP
dynamics, this network description is equivalent to the
one used in [34] for a QIF network with post-synaptic
depression. Indeed, under a first-order approximation of
the dynamics of  and u via the Poissonian assumption,
the system given by egs. (1)), a QIF network with pre-
synaptic STP, is essentially approximated by egs. ,
a QIF network with post-synaptic STP (see Fig. 1] for a
visualization of the differences between the two). Hence,
we will refer to the network given by eqs. as SNNpost -

Next, we compared the behavior of the two different
QIF network descriptions (SNNpe and SNN,o) to the
mean-field model dynamics. This was done to verify
that FREpoisson 18 indeed an exact mean-field model of
SNN; st and to see under which conditions pre- and post-
synaptic STP have similar or different effects on the QIF
network dynamics. To this end, we used bifurcation anal-
ysis to identify phase transitions in the mean-field model
around which we compared the behavior of the three
models. This way, we were able to set up stimulation
paradigms that induce strong changes in the dynamic be-
havior of the mean-field model and evaluate whether the
QIF networks express qualitatively similar phase transi-
tions or not. Bifurcation analysis was performed numeri-
cally, using the Python software PyRates [43], which pro-
vides an interface to the parameter continuation software
Auto-07p [44]. We initialized the mean-field model with
either purely depressing synapses (Up = 1.0, « = 0.04)
or purely facilitating synapses (Uyp = 0.2, « = 0.0). In
each case, we performed a parameter continuation in
the background excitability 77 for two different values of
A € 0.01,0.4. The latter introduces two different levels
of firing rate heterogeneity to the QIF network. We ex-
pected this firing rate heterogeneity to directly affect the
broadness of the distributions over X; and U;. If that is
indeed the case, the mean-field model should provide a
better description of the SNN. dynamics for A = 0.01
than for A = 0.4.

As can be seen in Fig. [JA and B, we identified fold bi-
furcations for facilitating synapses for A = 0.4 as well as
A = 0.01. These fold bifurcations mark the outer limits
of a bi-stable regime in which a stable high-activity fo-
cus and a stable low-activity node can co-exist, separated
by a saddle-focus. Indeed, we find that the steady-state
behavior of the mean-field model and SNN.s can be
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FIG. 3. Evolution of the state variables of a QIF network and a mean-field approximation thereof for three different types
of synaptic short-term plasticity (A: depression, B: facilitation, combined C: depression and facilitation). The first two rows
show the distribution over the synaptic state X;U; and the spiking activity of 100 randomly selected neurons, respectively.
The last 4 rows show a comparison between the spiking neural network (black) and the mean-field approximation (orange)
for the average firing rate r, the average membrane potential v, the average depression z, and the average facilitation u. In
the SNN, averages were calculated across neurons i. Grey-shaded areas depict time intervals in which a rectangular input of
I(t) = 2.0 was applied to the model. Color bars depict the probability density inside a given bin of the distribution over X;U;.
Parameters for A: Up = 1.0, a = 0.1. Parameters for B: Uy = 0.2, a = 0.0. Parameters for C: Uy = 0.2, o = 0.1. Other model
parameters: 7 = 1.0, A = 2.0, 7 = —3.0, J = 15.0/A, 7, = 50.0, 7, = 20.0, N = 10000.
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forced towards either of the two stable equilibria via ex-
trinsic stimulation. As shown for A = 0.4 and A = 0.01
in Fig. @A and B, respectively, there is always a very
good agreement between those two models. Regarding
SNNye, we failed to identify the bi-stable regime for
A = 0.4. In Fig. @A, it can be seen that the system
behavior is only governed by a high-activity focus, even
though the mean-field model predicts the co-existence
of a low-activity stable node for 7 = —0.6. Thus, the
mean-field model fails to predict the behavior of the QIF
network with pre-synaptic STP in this case. However, in
the case of very low heterogeneity, we identified both sta-
ble states exists in SNNp;, and found a good agreement
with the mean-field model (see Fig. [AB).

For depressing synapses, we found regimes of synchro-
nized oscillations that emerge via Andronov-Hopf bifur-
cations for small as well as for high firing rate heterogene-
ity (see Fig. and D). Again, these oscillations could
be induced in FREpgisson as well as in SNNpo with a
very good match between the two. Consistent with our
findings for facilitating synapses, SNN,. expressed os-
cillations only for A = 0.01 (see Fig. D). For higher
firing rate heterogeneity (A = 0.4), the network did not
show any tendency to oscillate at all, even though the
mean-field model predicted oscillations to be present at
i1 = —0.85 (see Fig. [[C).

Thus, our results confirm that FREpgisson 1S indeed
an exact mean-field equation of SNNpos. Furthermore,
they demonstrate that SNNp. and SNN.s can behave
both very differently and very similarly, depending on
the firing rate heterogeneity inside the network. In our
simulations, we were able to control this heterogeneity
successfully via the parameter A. In regimes of low fir-
ing rate heterogeneity, SNN,. and SNN,. expressed
similar behavior, thus allowing for a good approximation
of the mean-field dynamics of SNNp. via FREpgisson-
In regimes of high firing rates heterogeneity, the oppo-
site was the case. In the next sections, we investigate
whether more accurate mean-field models of QIF net-
works with pre-synaptic STP can be derived and, if so,
how they perform near the parameter regimes described
in this section.

V. MULTI-POPULATION APPROXIMATION
OF DISTRIBUTED PARAMETERS IN THE QIF
NETWORK

In the previous section, we have found that FREpeisson
is in good agreement with the dynamics of SNN,;, when
the distribution of n; is particularly narrow, i.e. when
A < 1. Here, we exploit this fact and approximate the
mean field dynamics by dividing the microscopic network
into sub-networks with narrow distributions in 7;. In
other words, the Lorentzian distribution with {7, A} is
divided into a set of M Lorentzian distributions with

{ﬁ?’rﬂ A’m}7 m = 17 ceey M, such that

A/m Nii Ay, /m (19)
(=02 +A2 7 M 2= (n—17,)* + A2,

The resulting set of equations for the evolution of the
mean field variables is then given by
A

o m
Tlm = —— + 2TmUm,
T

(20a)

M
J
TOm, = vfn + N+ I(t) + MT ;xnunrn — (ﬂ'T‘mT)Q)

(20b)
. 1- LTm,
Ty = — QUM TmTm, (20c¢)
Tz
Un —
i = <2 L Uo(1 — ). (20d)

Tu

We will refer to this set of mean-field equations as
FREmpa, for multi-population approximation. One as-
sumption we make here is that each sub-network con-
tains the same number of neurons, which means that the
weights for each sub-network are the same, and the mean
field variables can be obtained by computing the mean
y=(1/M) 2%21 Ym, where y represents the mean field
variable under consideration. The parameters 7, and
A,, are chosen as follows:

Tim = 7 + Atan %, (21a)
B m(2m — M —1/2)
A, = Atan ST+ 1)
w(2m — M —3/2)
— tan ST+ 1) ) (21b)

The density of the parameters 7,, follows the Lorentzian
distribution, and the A,, are chosen such that the half-
widths approximately match the distances between the
centers of the distributions of the sub-networks, i.e.
Tm+1 — Tm ~ Apm+1 + Ay, The results are shown in
figure [JA. As can be seen, even at large M the adap-
tation variables still show a small discrepancy with the
result obtained from the spiking neural network SNN .
We hypothesise that this difference is due to different
results for the adaptation variables when the firing rate
is assumed constant, and when it is assumed to be a
spike train with constant ISI, as shown in Fig. 2] In
other words, we expect that accounting for the fact that
FREpgisson Was derived for SNNp,. II instead of SNN;e
will reduce the difference. As the adaptation variables
are in essence time-averaged quantities, the adaptation
variables could be posed as z = (X~ + X1)/2 and
u = (U + U")/2. However, with the update rules
Ut =U" +Uy(1-U")and XT = X~ —aU*" X", this
would yield out-of-bound values for X~ at = 1, and
U~ at u = 0. The results shown in Figure |2[suggest that
the mean field variables are closest to X~ and U~, which



is why we set X~ =~ x, and U~ ~ u. The update rule for
U gives the following correction term:

Ut (u) = u+ Uy(l —u). (22)

Inserting this term into the mean field equations for
FREpa produces a closer match of the mean field vari-
ables with the results of the microscopic model SNNp,.,

see figure BB.

As a final test of the predictive accuracy of FREypa,
we examined how well the model can predict the onset of
oscillations in the QIF network. Using bifurcation analy-
sis, we identified the Hopf bifurcation leading to the oscil-
lations in Fig. and investigated the locus of that Hopf
bifurcation in the 2D parameter space spanned by 77 and
A. This, we did for both FREpeisson and FREypa with
M = 100 mean-field populations. As shown in Fig. [6A,
we found that the Hopf curves emerged from a Bogdanov-
Takens bifurcation in both FRE models. This represents
the same bifurcation structure as has already been identi-
fied for QIF networks with SD (see Fig.2 and 4 in [34] for
the corresponding 1D and 2D bifurcation diagrams, re-
spectively). Furthermore, we have shown the correspond-
ing 1D bifurcation diagrams for the FREpisson model for
A =04 and A = 0.01 in Fig. and D, respectively.
Thus, we expect stable oscillations to exist in the regions
enclosed by the Hopf curves. As shown in Fig[fA, the dif-
ference between the Hopf curves predicted by FREpoisson
and FREypa becomes larger when A increases. For
A = 0.4, FREpgisson predicts stable oscillations to ex-
ist at 7 = —0.85, which we already failed to find in the
QIF network in FiglD. FREypa predicts the existence
of a stable node at 7 = —0.85, however, and the exis-
tence of stable oscillations for —0.66 < 7 < —0.6. To see
whether the oscillations predicted by FRE\pa indeed ex-
ist in SNNyre, we performed numerical simulations where
we initialized the QIF network at 7 = —0.85 and then
forced it towards 7 = —0.62 via extrinsic stimulation.
As can be seen in FigloB, the QIF network expressed
steady-state behavior for 7 = —0.85 and started to os-
cillate when pushed to 7 = —0.62. Hence, FREy\pa cor-
rectly predicted the existence of oscillatory bursts in the
QIF network for M = 100, but not for M = 1, for which
FREwMpa reduces to FREpgisson. The bursts have similar
properties as the ones found in QIF networks with post-
synaptic plasticity [34] and can be expected to result from
the interaction between synaptic short-term depression
and recurrent excitation via the network. Comparing

the firing rate dynamics of FREympa and SNNy,, in Fig@

reveals a slight difference between the oscillation period
of the mean-field model and the QIF network. This dif-
ference shows that FREypa can not be considered an
exact mean-field model, even for M = 100. Still, we find
that it captures the phase transitions inside SNNp,.. well
and thus provides a reasonable trade-off between accu-
racy and computational complexity.
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VI. ADIABATIC APPROXIMATION OF STP
DYNAMICS

For simplification, we will consider synapses with mere
short-term depression in this section, since we showed
in section [V] that the mismatch between the mean-field
model FREpgisson and the QIF networks SNN,. and
SNNye II could be reproduced in this simpler case as
well. We thus consider the microscopic system given by

Vi = V2 + I(t) ZX S, (23a)

X =1—X; — aX; 87y, (23b)
t

Si= > / a(t —t)s(t' —th)dr'. (23c)
R\t <t T

In this system, we approximate the STP dynamics via
a linear differential operator L, i.e. LX;(t) = S;(t). In
such a case, a Green’s function G(t) exists that allows
one to express the dynamics of X; via a convolution of
G(t) with the spiking activity of neuron i:

t):/_t Gt —t)S;(t)dt' =G S;.  (24)

Then, since S; is related to z(n;,t) via S;im = z(n;,t),
eq. (4) can be written as

= w(n,t)* +n+ I(t)

R ).
™

(25)
To solve €q. . for r and v, the effective firing rate
reg = [ (G = r(n)r(n)g(n )dn must be determined,
which requires one to evaluate the product between the
single cell firing rate and a convolution of itself. This
makes it difficult to find a closed-form solution for r and
v, since the synaptic depression kernel G cannot simply
be pulled out from the convolution integral. The simplest
approximation of this problem is to replace the convolu-
tion integral by a mean synaptic depression, as is done
for the Poissonian assumption. Alternatively, we assume
that the dynamics of X; are slow in comparison to the
dynamics of v;. For the relaxation dynamics of X, this
assumption is met if 7, > 7. We note here, however,
that the spiking activity of the neuron also introduces
a relatively fast time scale to eq. , which may vio-
late our assumption. Still, under this assumption, we can
apply an adiabatic approximation to the system and con-
sider the dynamics of the fast sub-system for effectively
constant adaptation (see [34], [45] for a similar approach):

drw(n,t) = + J(G *

TV V +’r]z+I

s= % [ o~

E\th <t

(26a)

N ZX 5.77

(26b)
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FIG. 5. Comparison of the mean field variables of the microscopic spiking neural network, and the mean field model of the
spiking neural network divided into M sub-networks with narrow distribution (multi-population approximation, MPA). Grey
shaded areas indicate time intervals with I(¢) = 3.0. A: MPA with standard mean field description, B: MPA with correction
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FIG. 6. Phase transitions between steady-state and oscillatory regimes in FREpoisson and FREnpa. A: 2D bifurcation diagram
of the Hopf curve in FREpgisson (orange) and FREnpa (blue). The arrow represents the phase transition introduced by I(t) in
either model. The black square represents the Bogdanov-Takens bifurcation from which the Hopf bifurcations emerge. B:The
first row shows the simulated firing dynamics of the spiking neural network and both mean-field models. The second row shows
the corresponding spiking activity of 100 randomly selected neurons of SNN,.. Parameters: a = 0.04, Uy = 1.0, 7 = 1.0,
A ==04, 7=-0.85,J=28.0, 7 =500, 7, =20.0, N =10000, M = 100, I(t) = 0.23 for ¢t > 250 and I(t) = 0.0 otherwise.

where X; is approximated as neuron-specific constant. citabilities 7; and the resulting heterogeneity of single
Due to the Lorentzian distribution of the background ex-



cell firing rates in the network, X; cannot be assumed as
homogeneous across neurons. Instead, it must be con-
sidered a distributed quantity, governed by a probability
density function h(X;). Then, the main difficulty in de-
veloping the mean field description lies in the fact that
h(X;) is generally unknown if a mean field variable is
considered. More precisely, if we consider the mean field
variable z that describes the average synaptic depression
across the network, little is known about the distribu-
tion of the microscopic variables X;, which is required to
determine the effective firing rate rog¢. By using the adia-
batic approximation, we argue that an approximation of
roff can be obtained by estimating the distributions X (n)
and r(n) from the mean field variables in the stationary
case, and solving

it = / / ZXr(n)h(Xn)g(n)dndX (27)

Assuming independent Lorentzian density functions for
hand g, i.e. h(X|n)g(n) = h(X)g(n), eq. would only
need to be evaluated at the poles in the lower half-planes
ar(t) +iv(t) = w(n —iA, X —ilAx,t), where X and Ay
would represent the center and HWHM of the Lorentzian
distribution over X, respectively. Then, the effect of pre-
synaptic STP on the network dynamics would effectively
reduce to a distribution over the coupling parameter J.
For the mean-field equations of a QIF network with dis-
tributed coupling parameters see [29]. However, h and
g cannot be assumed to be independent, since 7; con-
trols the firing rate of neuron ¢, which in turn controls
its synaptic depression X;. Furthermore, X is bound be-
tween [0,1] and hence a Lorentzian distribution cannot
be assumed. In the upper row of Fig. [3] we show the
evolution of the distribution over X,;U; for three differ-
ent parametrizations, corresponding to a purely depress-
ing synapse, a purely facilitating synapse, and a synapse
with facilitation and depression acting on different time
scales. Importantly, the evolution of the distribution re-
veals that it is not always uni-modal. For purely depress-
ing synapses, it clearly expresses an at least bi-modal dis-
tribution over the whole time course. Thus, finding an
appropriate form of h that holds in general is a highly
non-trivial problem that we did not find a solution for.

To further simplify the problem, we assume that the
depression of a neuron’s efferent synapses X; is merely
a function of the firing rate r; of the same neuron. The
stationary firing rate of a QIF neuron in response to an
external Input I;, is /I;, /7 if I;;, > 0, and zero other-
wise. Hence, the distribution of firing rates for a given
input is (in the stationary case) given by

T(U;Im) = H(T]+I’Ln) \% 77+Iin/7r7 (28)

where H is the Heaviside step function. Therefore, for
any given mean field firing rate r one can find a unique
constant I, for which

- e 1) g(n)dn, (20)

— 00
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which allows us to translate the mean field variable r into
the distribution r(n; I.).

Similarly, we can use the assumption that X; is a func-
tion of r; to translate the mean field variable for synap-
tic depression, x, into the distribution X (n; I;). First, we
use the rate relationship given by eq. to approximate

w(n; L) = 1/(1 + arer(n; L), (30)

for any given input I, and then define

n= | T o)/ omer(n L))y, (31)

—0Q0

Alternatively, we can use eq. to approximate the
distribution z(n) in the spiking scenario:

1 —exp(—=1/7r(n; 1))

x(n; L) = 1 (1 —a)exp(—1/mor(m: 1))’ (32)
which yields
[ (I —exp(=1/7er(n; 12)))g(n)
n= | A e e 09

Having obtained I, and I, we can ultimately compute

it = / T L)t L)a(ndn, (34)

where x(nm;I,) is either chosen for the rate scenario

(eq. (30)), or in the spike scenario (eq. (32)). This re-
quires one to solve

Tf—f:é/ ! n+1 dn (35)
T ) ltanyntL (n—n)? + A2

min(—1I,,—1I,)

in the rate scenario, and

Vi+1
)—(1—a) (1 =)+ A7 "

(36)
in the spiking scenario. We refer to this mean-field model
as FRE,, for adiabatic approximation, with FRE,,; and
FRE,.2 denoting the mean-field model considering the
rate and spike scenario, respectively.

The integrals involved in this approximation are hard
to evaluate analytically, therefore we solve these integrals
numerically for a range of values of I, and I, and cre-
ate look-up tables for I,., I, and reg in order to be able
to integrate the resulting model equations numerically.
In Figure [7| we compare the results of the mean-field
model FRE,, with the dynamics of the spiking neural
network SNNp.., and the mean field model FREpoisson-
We find that FRE,, is closer to the microscopic dynamics
of SNN,;e than FREpoisson-

T oexp|—E=—) -1
A Tz\/m
Teff = —5
T e

T
(TI\/U+II

min(—1I,,—1,
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Comparison of the mean field variables of the microscopic spiking neural network, the mean field model using the

Poissonian assumption, and the mean field model with approximation of the effective firing rate. Grey shaded areas indicate
time intervals with I(¢) = 3.0. Parameters: o = 0.1, 7 = 1.0, A = 1.0, 7 = —2.0, J = 15.0, 7 = 50.0, 7, = 20.0, N = 10000.

VII. CONCLUSION

In this work, we examined whether spiking neural net-
works with pre-synaptic short-term plasticity allow for
the derivation of low-dimensional mean-field equations
via the Lorentzian ansatz described in [29]. To this end,
we considered heterogeneous, all-to-all coupled QIF net-
works with pre-synaptic STP dynamics, described by a
well-known phenomenological model of synaptic short-
term depression and facilitation [39]. For such QIF net-
works, other forms of STP have already been shown to
be compatible with the Lorentzian ansatz [34]. In the
case of pre-synaptic STP, we identified the evaluation of
the effective network input reg as the central problem for
a mean-field derivation via the Lorentzian ansatz. This
effective network input represents a weighted sum of in-
coming spikes, where the weights are given by the pre-
synaptic depression and facilitation terms. We presented
three different approaches to express reg and thus find
the mean-field equations: First, a mean-field description
of the STP dynamics via the Poissonian assumption used
in [37]; second, a multi-population approximation that
approximates distributed parameters inside the QIF net-
work via a set of coupled sub-populations with different
parametrizations; and third, an adiabatic approximation
of the STP time scales.

For the first approach, the effective network input r¢s
is approximated by a modulation of the mean-field firing
rate with an average depression and an average facilita-
tion. Our analysis revealed that this approach essentially
approximates pre-synaptic STP with post-synaptic STP.
We compared the behavior of QIF networks with pre-
vs. post-synaptic STP and found that they can express
substantial qualitative differences in their dynamics, es-
pecially when SNNy,.. expresses a high firing rate hetero-
geneity across neurons. Near such regimes, FREpgisson
follows the dynamics of SNNpqst, and thus fails to cap-
ture the behavior of SNNy.. It is worth noticing that
the mean-field derivation via the Poissonian assumption
works well for networks of homogeneous Poisson neurons
with independent noise [42]. In such networks, single cell

firing rates can differ momentarily due to noise, but ap-
proach the same rate when averaged over increasing time
intervals. This is a very different scenario compared to
the QIF network considered here, where the Lorentzian
distribution over 7); causes substantial heterogeneity in
the single cell firing rates. Hence, the Poissonian approx-
imation becomes worse the stronger the heterogeneity of
single cell firing rates inside the QIF network is. In [37],
where the Poissonian approximation was first applied to
a QIF network with pre-synaptic STP, the authors chose
QIF networks with relatively low firing rate heterogene-
ity, leading to a good correspondence with the mean-
field model. Here, we clarified that this correspondence
does not generalize to regimes where the QIF network
expresses more heterogeneous firing rates.

Populations of neurons that naturally express hetero-
geneous firing rates exist in sub-cortical structures, for
example. Single cell firing rates in the globus pallidus
have been shown to differ substantially across neurons
[46, [47]. This firing rate heterogeneity has been sug-
gested as an important de-synchronization mechanism of
pallidal activity [48, [49]. Our results suggest that study-
ing the mean-field dynamics in such a population via
FREpoisson comes at the risk of substantial errors. We
thus developed a mean-field model that addresses the is-
sue of high firing rate heterogeneities. Since the distribu-
tion over n; is the source of heterogeneity in the QIF net-
work, we attempted to improve the mean-field model by
considering a set of coupled sub-networks with distinct,
but narrow distributions over ;. This way, the neurons
inside each sub-population are parametrized such that
they express a considerably lower firing rate heterogene-
ity than the overall network. We found that, by increas-
ing the number of sub-populations, the mean-field model
converges to the QIF network behavior. Of course, this
approach leads to mean-field models of relatively high
dimensionality. Still, we found that a mean-field model
with 100 sub-populations (i.e. a 400-dimensional model),
accurately predicted phase transitions of the QIF net-
work from steady-state to oscillatory behavior in a regime
where FREpgisson failed to do so. Thus, we argue that



this multi-population approximation provides a flexible
mean-field description, the dimensionality of which can
be chosen based on the expected firing rate heterogeneity
in the neural population under investigation.

As an alternative to the Poissonian approximation, we
applied an adiabatic approximation to the QIF network,
assuming slow STP dynamics in comparison to the QIF
dynamics. This assumption is supported by experimental
results that suggest depression and facilitation recovery
time scales that are at least 10 times slower than typi-
cal membrane potential time scales [37, 39, 50]. Previ-
ously, this approach has been used successfully for the
derivation of mean-field equations for QIF networks with
spike-frequency adaptation [34]. By approximating the
pre-synaptic STP dynamics as slow, they can be consid-
ered as constant, distributed quantities in the fast sub-
system. This way, the STP dynamics do not have to be
considered for the evaluation of reg. Instead, appropriate
distributions over the STP constants have to be chosen.
In our work, we derived analytical solutions of the mi-
croscopic STP dynamics in the stationary case and used
these solutions to approximate the STP distributions.
This approach can be considered exact for the description
of steady-state solutions, but not for transient dynamics.
That is, the network must have converged to an equilib-
rium for our approximation to be accurate. Still, we find
that our adiabatic approximation provides a more ac-
curate approximation of the mean-field dynamics of the
QIF network dynamics than the Poissonian approxima-
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tion, even for transient dynamics. A disadvantage of this
method is, however, that we had to approximate the inte-
grals over the STP distribution numerically and calculate
roff via look-up tables. This makes it more difficult to
implement the model equations and perform parameter
continuations.

In conclusion, we performed a thorough analysis of the
problems that arise when attempting to derive the mean-
field equations for QIF networks with synaptic short-
term plasticity. Though we did not find a set of exact,
closed-form mean-field equations, we provided two differ-
ent mean-field approximations that we found to be more
accurate than a previously proposed mean-field model.
Both of these mean-field approximations can capture the
qualitative dynamics of the QIF network and can thus be
used for future investigations of its macroscopic dynam-
ics. Finally, our work provides insight into the distinct
effects that pre- vs post-synaptic STP can have on the
mean-field dynamics of spiking neural networks.
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