806 research outputs found
Semiclassical theory of spin-orbit interaction in the extended phase space
We consider the semiclassical theory in a joint phase space of spin and
orbital degrees of freedom. The method is developed from the path integrals
using the spin-coherent-state representation, and yields the trace formula for
the density of states. We discuss special cases, such as weak and strong
spin-orbit coupling, and relate the present theory to the earlier approaches.Comment: 36 pages, 8 figures. Version 2: revised Sec. 4.4 and Appendix B;
minor corrections elsewher
A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data
Spectral line surveys are useful since they allow identification of new
molecules and new lines in uniformly calibrated data sets. Nonetheless, large
portions of the sub-millimetre spectral regime remain unexplored due to severe
absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the
measurements presented here is to cover wavelength regions at and around 0.55
mm -- regions largely unobservable from the ground. Using the Odin
astronomy/aeronomy satellite, we performed the first spectral survey of the
Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with
rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size
telescope, equipped with four cryo-cooled tuneable mixers connected to broad
band spectrometers, was used in a satellite position-switching mode. Two mixers
simultaneously observed different 1.1 GHz bands using frequency steps of 0.5
GHz (25 hours each). An on-source integration time of 20 hours was achieved for
most bands. The entire campaign consumed ~1100 orbits, each containing one hour
of serviceable astro-observation. We identified 280 spectral lines from 38
known interstellar molecules (including isotopologues) having intensities in
the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart
from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O
and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the
HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from
NH3 and its rare isotopologue 15NH3. We suggest assignments for some
unidentified features, notably the new interstellar molecules ND and SH-.
Severe blends have been detected in the line wings of the H218O, H217O and 13CO
lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in
Astronomy and Astrophysics 30 August 200
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
Separating the regular and irregular energy levels and their statistics in Hamiltonian system with mixed classical dynamics
We look at the high-lying eigenstates (from the 10,001st to the 13,000th) in
the Robnik billiard (defined as a quadratic conformal map of the unit disk)
with the shape parameter . All the 3,000 eigenstates have been
numerically calculated and examined in the configuration space and in the phase
space which - in comparison with the classical phase space - enabled a clear
cut classification of energy levels into regular and irregular. This is the
first successful separation of energy levels based on purely dynamical rather
than special geometrical symmetry properties. We calculate the fractional
measure of regular levels as which is in remarkable
agreement with the classical estimate . This finding
confirms the Percival's (1973) classification scheme, the assumption in
Berry-Robnik (1984) theory and the rigorous result by Lazutkin (1981,1991). The
regular levels obey the Poissonian statistics quite well whereas the irregular
sequence exhibits the fractional power law level repulsion and globally
Brody-like statistics with . This is due to the strong
localization of irregular eigenstates in the classically chaotic regions.
Therefore in the entire spectrum we see that the Berry-Robnik regime is not yet
fully established so that the level spacing distribution is correctly captured
by the Berry-Robnik-Brody distribution (Prosen and Robnik 1994).Comment: 20 pages, file in plain LaTeX, 7 figures upon request submitted to J.
Phys. A. Math. Gen. in December 199
Semiclassical limits for the QCD Dirac operator
We identify three semiclassical parameters in the QCD Dirac operator. Mutual
coupling of the different types of degrees of freedom (translational, colour
and spin) depends on how the semiclassical limit is taken. We discuss various
semiclassical limits and their potential to describe spectrum and spectral
statistics of the QCD Dirac operator close to zero virtuality.Comment: 34 pages, 1 figur
Neutron-proton interaction in rare-earth nuclei: Role of tensor force
We investigate the role of the tensor force in the description of doubly odd
deformed nuclei within the framework of the particle-rotor model. We study the
rare-earth nuclei 174Lu, 180Ta, 182Ta, and 188Re using a finite-range
interaction, with and without tensor terms. Attention is focused on the lowest
K=0 and K=1 bands, where the effects of the residual neutron-proton interaction
are particularly evident. Comparison of the calculated results with
experimental data evidences the importance of the tensor-force effects.Comment: 8 pages, 5 figures, to be published on Physical Review
Chaos in Axially Symmetric Potentials with Octupole Deformation
Classical and quantum mechanical results are reported for the single particle
motion in a harmonic oscillator potential which is characterized by a
quadrupole deformation and an additional octupole deformation. The chaotic
character of the motion is srongly dependent on the quadrupole deformation in
that for a prolate deformation virtually no chaos is discernible while for the
oblate case the motion shows strong chaos when the octupole term is turned on.Comment: 6 pages LaTex plus 4 figures available by contacting the authors
directly, published in PHYS.REV.LETT. 72(1994) 235
Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in
March-April 2013 and January 2015, combined with the improved observational
capabilities of submillimeter facilities, offered an opportunity to carry out
sensitive compositional and isotopic studies of the volatiles in their coma. We
observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January
2015, and with the Odin submillimeter space observatory on 29 January - 3
February 2015. We detected 22 molecules and several isotopologues. The
HO and HO production rates measured with Odin follow a
periodic pattern with a period of 0.94 days and an amplitude of ~25%. The
inferred isotope ratios in comet Lovejoy are O/O = 499 24
and D/H = 1.4 0.4 in water, S/S = 24.7
3.5 in CS, all compatible with terrestrial values. The ratio
C/C = 109 14 in HCN is marginally higher than terrestrial
and N/N = 145 12 in HCN is half the Earth ratio. Several
upper limits for D/H or 12C/13C in other molecules are reported. From our
observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio
in an Oort Cloud comet that is not larger than the terrestrial value. On the
other hand, the observation of the same HDO line in the other Oort-cloud comet,
C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous
measurements of D/H in cometary water, this illustrates that a diversity in the
D/H ratio and in the chemical composition, is present even within the same
dynamical group of comets, suggesting that current dynamical groups contain
comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic
Semiclassical theory of spin-orbit interactions using spin coherent states
We formulate a semiclassical theory for systems with spin-orbit interactions.
Using spin coherent states, we start from the path integral in an extended
phase space, formulate the classical dynamics of the coupled orbital and spin
degrees of freedom, and calculate the ingredients of Gutzwiller's trace formula
for the density of states. For a two-dimensional quantum dot with a spin-orbit
interaction of Rashba type, we obtain satisfactory agreement with fully
quantum-mechanical calculations. The mode-conversion problem, which arose in an
earlier semiclassical approach, has hereby been overcome.Comment: LaTeX (RevTeX), 4 pages, 2 figures, accepted for Physical Review
Letters; final version (v2) for publication with minor editorial change
Water and ammonia abundances in S140 with the Odin satellite
We have used the Odin satellite to obtain strip maps of the ground-state
rotational transitions of ortho-water and ortho-ammonia, as well as CO(5-4) and
13CO(5-4) across the PDR, and H218O in the central position. A physi-chemical
inhomogeneous PDR model was used to compute the temperature and abundance
distributions for water, ammonia and CO. A multi-zone escape probability method
then calculated the level populations and intensity distributions. These
results are compared to a homogeneous model computed with an enhanced version
of the RADEX code. H2O, NH3 and 13CO show emission from an extended PDR with a
narrow line width of ~3 kms. Like CO, the water line profile is dominated by
outflow emission, however, mainly in the red wing. The PDR model suggests that
the water emission mainly arises from the surfaces of optically thick, high
density clumps with n(H2)>10^6 cm^-3 and a clump water abundance, with respect
to H2, of 5x10^-8. The mean water abundance in the PDR is 5x10^-9, and between
~2x10^-8 -- 2x10^-7 in the outflow derived from a simple two-level
approximation. Ammonia is also observed in the extended clumpy PDR, likely from
the same high density and warm clumps as water. The average ammonia abundance
is about the same as for water: 4x10^-9 and 8x10^-9 given by the PDR model and
RADEX, respectively. The similarity of water and ammonia PDR emission is also
seen in the almost identical line profiles observed close to the bright rim.
Around the central position, ammonia also shows some outflow emission although
weaker than water in the red wing. Predictions of the H2O(110-101) and
(111-000) antenna temperatures across the PDR are estimated with our PDR model
for the forthcoming observations with the Herschel Space Observatory.Comment: 13 pages, 14 figures, 10 tables. Accepted for publication in
Astronomy & Astrophysics 14 November 200
- …
