3,059 research outputs found

    Coherent States Formulation of Polymer Field Theory

    Full text link
    We introduce a stable and efficient complex Langevin (CL) scheme to enable the first numerical simulations of the coherent-states (CS) formulation of polymer field theory. In contrast with Edwards' well known auxiliary-field (AF) framework, the CS formulation does not contain an embedded non-linear, non-local functional of the auxiliary fields, and the action of the field theory has a fully explicit, finite-order and semi-local polynomial character. In the context of a polymer solution model, we demonstrate that the new CS-CL dynamical scheme for sampling fluctuations in the space of coherent states yields results in good agreement with now-standard AF simulations. The formalism is potentially applicable to a broad range of polymer architectures and may facilitate systematic generation of trial actions for use in coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure

    Evidence of a Critical time in Constrained Kinetic Ising models

    Get PDF
    We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.Comment: 20 Pages + 7 Figures, Revte

    Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow

    Get PDF
    We generalize the earlier theory by Fredrickson [J. Rheol. v.38, 1045 (1994)] to study the orientational behaviour of the hexagonal phase of diblock copolymer melt subjected to steady shear flow. We use symmetry arguments to show that the orientational ordering in the hexagonal phase is a much weaker effect than in the lamellae. We predict the parallel orientation to be stable at low and the perpendicular orientation at high shear rates. Our analysis reproduces the experimental results by Tepe et al. [Macromolecules v.28, 3008 (1995)] and explains the difficulties in experimental observation of the different orientations in the hexagonal phase.Comment: 21 pages, 6 eps figures, submitted to Physical Review

    Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    Get PDF
    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS

    Retail credit and the Patron Finance Program in Kansas cooperatives

    Get PDF
    Call number: LD2668 .T4 1966 F852Master of Scienc
    corecore