31 research outputs found

    Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding

    Get PDF
    Exchange of carbon between the ocean and the atmosphere is a key process that influences past climates via glacial-interglacial variations of the CO2 concentration. The melting of ice sheets during deglaciations induces a sea level rise which leads to the flooding of coastal land areas, resulting in the transfer of terrestrial organic matter to the ocean. However, the consequences of such fluxes on the ocean biogeochemical cycle and on the uptake and release of CO2 are poorly constrained. Moreover, this potentially important exchange of carbon at the land-sea interface is not represented in most Earth system models. We present here the implementation of terrestrial organic matter fluxes into the ocean at the transiently changing land-sea interface in the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and investigate their effect on the biogeochemistry during the last deglaciation. Our results show that during the deglaciation, most of the terrestrial organic matter inputs to the ocean occurs during Meltwater Pulse 1a (between 15-14 ka) which leads to the transfer of 21.2 GtC of terrestrial carbon (mostly originating from wood and humus) to the ocean. Although this additional organic matter input is relatively small in comparison to the global ocean inventory (0.06 %) and thus does not have an impact on the global CO2 flux, the terrestrial organic matter fluxes initiate oceanic outgassing in regional hotspots like in Indonesia for a few hundred years. Finally, sensitivity experiments highlight that terrestrial organic matter fluxes are the drivers of oceanic outgassing in flooded coastal regions during Meltwater Pulse 1a. Furthermore, the magnitude of outgassing is rather insensitive to higher carbon-to-nutrient ratios of the terrestrial organic matter. Our results provide a first estimate of the importance of terrestrial organic matter fluxes in a transient deglaciation simulation. Moreover, our model development is an important step towards a fully coupled carbon cycle in an Earth system model applicable to simulations at glacial-interglacial cycles

    Moist and warm conditions in Eurasia during the last glacial of the Middle Pleistocene Transition

    Get PDF
    The end of the Middle Pleistocene Transition (MPT, ~ 800-670 thousand years before present, ka) was characterised by the emergence of large glacial ice-sheets associated with anomalously warm North Atlantic sea surface temperatures enhancing moisture production. Still, the direction and intensity of moisture transport across Eurasia towards potential ice-sheets is poorly constrained. To reconstruct late MPT moisture production and dispersal, we combine records of upper ocean temperature and pollen-based Mediterranean forest cover, a tracer of westerlies and precipitation, from a subtropical drill-core collected off South-West Iberia, with records of East Asia summer monsoon (EASM) strength and West Pacific surface temperatures, and model simulations. Here we show that south-western European winter precipitation and EASM strength reached high levels during the Marine Isotope Stage 18 glacial. This anomalous situation was caused by nearly-continuous moisture supply from both oceans and its transport to higher latitudes through the westerlies, likely fuelling the accelerated expansion of northern hemisphere ice-sheets during the late MPT. © 2023, The Author(s).This research used samples collected during the Expedition no. 339 “Mediterranean Outflow“ of the Integrated Ocean Drilling Program (IODP). M.F.S.G. acknowledges funding from the GPR Human Past (University of Bordeaux). A.B. thanks Deutsche Forschungsgemeinschaft (DFG), project BA 3809/8. C.Z. acknowledges funding from IODP France and J.M.P.-M. from the Junta de Castilla y León and the European Regional Development Fund (Grant CLU-2019-03). T.R. acknowledges funding from FCT through projects Hydroshift (PTDC/CTA-CLI/4297/2021), WarmWorld (PTDC/CTA-GEO/29897/2017), UIDB/04326/2020, UIDP/04326/2020, LA/P/0101/2020 and EMSO-PT (POCI-01-0145-FEDER-022157). We thank Vincent Hanquiez for drawing Fig. and Ludovic Devaux for pollen sample preparation

    Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes

    Get PDF
    Background: Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk-and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Methods: Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Results: Our results showed that both, milk-and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Conclusion: Gender related variations in FA composition of rat liver PL were observed, and results have shown that those initial differences could be significantly modulated by the type of diet. Furthermore, the modulatory effects of milk-and fish-based diets on liver phospholipids FA profiles appeared to be sex-specific

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts

    No full text
    International audienceSuccession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern Ocean on atmospheric CO2 concentrations and climate, past changes in this region remain poorly documented. Here, we present the 800 ka deuterium excess record from the East Antarctica EPICA Dome C ice core, tracking sea surface temperature in evaporative regions of the Indian sector of the Southern Ocean from which moisture precipitated in East Antarctica is derived. We find that low obliquity leads to surface warming in evaporative moisture source regions during each glacial inception, although this relative temperature increase is counterbalanced by global cooling during glacial maxima. Links between the two regions during interglacials depends on the existence of a temperature maximum at the interglacial onset. In its absence, temperature maxima in the evaporative moisture source regions and in East Antarctica were synchronous. For the other interglacials, temperature maxima in the source areas lag early local temperature maxima by several thousand years, probably because of a change in the position of the evaporative source areas

    Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts

    No full text
    Succession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern Ocean on atmospheric CO2 concentrations and climate, past changes in this region remain poorly documented. Here, we present the 800 ka deuterium excess record from the East Antarctica EPICA Dome C ice core, tracking sea surface temperature in evaporative regions of the Indian sector of the Southern Ocean from which moisture precipitated in East Antarctica is derived. We find that low obliquity leads to surface warming in evaporative moisture source regions during each glacial inception, although this relative temperature increase is counterbalanced by global cooling during glacial maxima. Links between the two regions during interglacials depends on the existence of a temperature maximum at the interglacial onset. In its absence, temperature maxima in the evaporative moisture source regions and in East Antarctica were synchronous. For the other interglacials, temperature maxima in the source areas lag early local temperature maxima by several thousand years, probably because of a change in the position of the evaporative source areas

    HGCROC3: the front-end readout ASIC for the CMS High Granularity Calorimeter

    No full text
    International audienceFor the CMS High Granularity Calorimeter (CE), the final version of the 72-channel front-end ASIC (HGCROC3) was submitted in December 2020. HGCROC3 includes low-noise/high-gain preamplifiers/shapers and a 10-bit 40 MHz successive approximation ADC (SAR-ADC) that provide the charge measurement over the linear range of the preamplifier. In the saturation range, a discriminator and a time-to-digital converter (TDC) provide the charge information from the time over threshold (ToT; 200 ns dynamic range, 50 ps binning). A fast discriminator and another TDC provide timing information to 25 ps accuracy. The chip embeds all necessary ancillary services: bandgap circuit, PLL, threshold DACs. We present the experimental results on the latest and final version (HGCROC3) received in April 2021

    HGCROC-Si and HGCROC-SiPM: the front-end readout ASICs for the CMS HGCAL

    No full text
    International audienceThe two variants of HGCROC are the ASICs designed to readout the more than 6 million channels of the future HGCAL of CMS, which will consist of hexagonal silicon sensors for a large part but also SiPM-on-scintillators tiles. The SiPM version of the chip was made from the silicon version by adapting only the first amplifier stage. The first aspect is on the performance for both versions in terms of noise, charge and timing, the DAQ and Trigger paths, as well as results from irradiation qualification with total ionizing dose and heavy ions for single-event effects. The third version of HGCROC chip is a major digital release, with RadHard solutions and an additional buffer

    HKROC: an integrated front-end ASIC to readout photomultiplier tubes for the Hyper-Kamiokande experiment

    No full text
    The HKROC ASIC was originally designed to readout the photomultiplier tubes (PMTs) for the Hyper-Kamiokande (HK) experiment. HKROC is a very innovative ASIC capable of readout a large number of channels satisfying stringent requirements in terms of noise, speed and dynamic range. Each HKROC channel features a low-noise preamplifier and shapers, a 10-bit successive approximation Analog-to-Digital Converter (SAR-ADC) (designed by AGH Krakow) for the charge measurement (up to 2500 pC) and a Time-to-Digital Converter (TDC) (designed by CEA IRFU group) for the Time-of-Arrival (ToA) measurement with 25 ps binning. HKROC is auto-triggered and includes all necessary ancillary services as bandgap circuit, PLL (Phase-locked loop) and threshold DACs (Digital to Analog Converters). This paper will describe the ASIC architecture and the experimental results of the first HKROC prototype received in January 2022
    corecore