5,493 research outputs found

    Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes

    Get PDF
    AbstractMembrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in the selective packaging of anterograde cargo into coated transport vesicles budding from the ER [1]. In mammalian cells, these vesicles coalesce to form tubulo-vesicular transport complexes (TCs), which shuttle anterograde cargo from the ER to the Golgi complex [2–4]. In contrast, COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER [1,5–7]. The binding of COPI to COPII-coated TCs [3,8,9], however, has led to the proposal that COPI binds to TCs and specifically packages recycling proteins into retrograde vesicles for return to the ER [3,9]. To test this hypothesis, we tracked fluorescently tagged COPI and anterograde-transport markers simultaneously in living cells. COPI predominated on TCs shuttling anterograde cargo to the Golgi complex and was rarely observed on structures moving in directions consistent with retrograde transport. Furthermore, a progressive segregation of COPI-rich domains and anterograde-cargo-rich domains was observed in the TCs. This segregation and the directed motility of COPI-containing TCs were inhibited by antibodies that blocked COPI function. These observations, which are consistent with previous biochemical data [2,9], suggest a role for COPI within TCs en route to the Golgi complex. By sequestering retrograde cargo in the anterograde-directed TCs, COPI couples the sorting of ER recycling proteins [10] to the transport of anterograde cargo

    A microtubule-binding protein associated with membranes of the Golgi apparatus.

    Full text link

    Molecular Motor of Double-Walled Carbon Nanotube Driven by Temperature Variation

    Full text link
    An elegant formula for coordinates of carbon atoms in a unit cell of a single-walled nanotube (SWNT) is presented and a new molecular motor of double-walled carbon nanotube whose inner tube is a long (8,4) SWNT and outer tube a short (14,8) SWNT is constructed. The interaction between inner an outer tubes is analytically derived by summing the Lennard-Jones potentials between atoms in inner and outer tubes. It is proved that the molecular motor in a thermal bath exhibits a directional motion with the temperature variation of the bath.Comment: 9 pages, 4 figures, revtex

    A Microscopic Mechanism for Muscle's Motion

    Full text link
    The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M. Nakano can explain the muscle's motion perfectly, but the intermolecular potential between myosin head and G-actin is too simple and only repulsive potential is considered. In this paper we study the SIRM with different complex potential and discuss the effect of the spring on the system. The calculation results show that the spring, the effective radius of the G-actin and the intermolecular potential play key roles in the motion. The sliding speed is about 4.7×10−6m/s4.7\times10^{-6}m/s calculated from the model which well agrees with the experimental data.Comment: 9 pages, 6 figure

    Beta-COP localizes mainly to the cis-Golgi side in exocrine pancreas.

    Full text link

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Force and Motion Generation of Molecular Motors: A Generic Description

    Get PDF
    We review the properties of biological motor proteins which move along linear filaments that are polar and periodic. The physics of the operation of such motors can be described by simple stochastic models which are coupled to a chemical reaction. We analyze the essential features of force and motion generation and discuss the general properties of single motors in the framework of two-state models. Systems which contain large numbers of motors such as muscles and flagella motivate the study of many interacting motors within the framework of simple models. In this case, collective effects can lead to new types of behaviors such as dynamic instabilities of the steady states and oscillatory motion.Comment: 29 pages, 9 figure

    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion

    Full text link
    The orthogonal matching pursuit (OMP) is an algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general and in particular for two deconvolution examples from mass spectrometry and digital holography respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transfered to ill-posed inverse problems since here the atoms are typically far from orthogonal: The ill-posedness of the operator causes that the correlation of two distinct atoms probably gets huge, i.e. that two atoms can look much alike. Therefore one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for exact recovery of the support of noisy signals. In the two examples in mass spectrometry and digital holography we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography our analysis may be regarded as a first step to calculate the resolution power of droplet holography

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore