486 research outputs found

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Non-Gaussian power grid frequency fluctuations characterized by Levy-stable laws and superstatistics

    Get PDF
    Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today’s frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids

    An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals

    Get PDF
    Pollen is at once intimately part of the reproductive cycle of seed plants and simultaneously highly relevant for the environment (pollinators, vector for nutrients, or organisms), people (food safety and health), and climate (cloud condensation nuclei and climate reconstruction). We provide an interdisciplinary perspective on the many and connected roles of pollen to foster a better integration of the currently disparate fields of pollen research, which would benefit from the sharing of general knowledge, technical advancements, or data processing solutions. We propose a more interdisciplinary and holistic research approach that encompasses total environmental pollen diversity (ePD) (wind and animal and occasionally water distributed pollen) at multiple levels of diversity (genotypic, phenotypic, physiological, chemical, and functional) across space and time. This interdisciplinary approach holds the potential to contribute to pressing human issues, including addressing United Nations Sustainable Development Goals, fostering social and political awareness of these tiny yet important and fascinating particles

    Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring

    Get PDF
    Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years

    Correction: Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    The following information was missing from the funding section: BBSRC, DEFRA, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative crops project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore