7,166 research outputs found

    Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape

    Get PDF
    We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm. By taper cut-back, we observed that the dissipative landscape, i.e., a non-monotonic variation of the average beam power along the MMF, leads to modal transitions of self-cleaned beams along the taper length

    Frequency-Resolved Spatial Beam Mapping in Multimode Fibers: Application to Mid-Infrared Supercontinuum Generation

    Full text link
    We present a new spatial-spectral mapping technique permitting to measure the beam intensity at the output of a graded-index (GRIN) multimode fiber with sub-nanometric spectral resolution. We apply this method to visualize the fine structure of the beam shape of a sideband generated at 1870 nm by geometric parametric instability (GPI) in a GRIN fiber. After spatial-spectral characterization, we amplify the GPI sideband with a Tm-doped fiber amplifier to obtain a microjoule-scale picosecond pump whose spectrum is finally broadened in a segment of InF3 optical fiber to achieve supercontinuum ranging from 1.7 {\mu}m up to 3.4 {\mu}mComment: 4 pages, 6 Figure

    Far-detuned cascaded intermodal four-wave mixing in a multimode fiber

    Get PDF
    We demonstrate far-detuned parametric frequency conversion processes in a few mode graded-index optical fibers pumped by a Q-switched picosecond laser at 1064 nm. Through a detailed analytical and numerical analysis, we show that the multiple sidebands are generated through a complex cascaded process involving inter-modal four-wave mixing. The resulting parametric wavelength detuning spans in the visible down to 405 nm and in the nearinfrared up to 1355 nm

    Nonlinear multimode fiber optics: recent advances

    Get PDF
    We start by providing an overview of the emerging field of nonlinear optics in multimode optical fibers [1]. These fibers provide a simple testbed for observing complex wave propagation dynamics, in analogy with other fields of physics ranging from two-dimensional hydrodynamic turbulence and Bose-Einstein condensation. In addition, nonlinear multimode optical fibers enable new methods for achieving the ultrafast, light-activated control of temporal, spatial and spectral degrees of freedom of intense, pulsed light beams, for a range of different technological applications

    Spatial Division Multiplexing for Multiplex Coherent Anti-Stokes Raman Scattering

    Full text link
    We demonstrate how a narrowband pump and a broadband spectrum can be spatially multiplexed by selective coupling them in two distinct modes of a few-mode microstructure fiber. The first mode carries most of the input pump energy, and experiences spectral broadening. Whereas the second mode preserves the narrow bandwidth of the remaining part of the pump. Bimodal propagation, with a power unbalance strongly in favor of the fundamental mode, is naturally obtained by maximizing coupling into the fundamental mode of the fiber. At the fiber output, the nearly monochromatic beam and the supercontinuum carried by the two different modes are combined by a microscope objective, and used as a pump and a Stokes wave for self-referenced multiplex coherent anti-Stokes Raman scattering micro-spectroscopy. The spectral resolution, the signal-to-noise-ratio, and the possible amplification of the remaining pump beam are discussed.Comment: 10 pages, 9 figure

    Chikungunya Virus Infection

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes, mostly Aedes aegypti and Aedes albopictus. After half a century of focal outbreaks of acute febrile polyarthralgia in Africa and Asia, the disease unexpectedly spread in the past decade with large outbreaks in Africa and around the Indian Ocean and rare autochthonous transmission in temperate areas. This emergence brought new insights on its pathogenesis, notably the role of the A226V mutation that improved CHIKV fitness in Ae. albopictus and the possible CHIKV persistence in deep tissue sanctuaries for months after infection. Massive outbreaks also revealed new aspects of the acute stage: the high number of symptomatic cases, unexpected complications, mother-to-child transmission, and low lethality in debilitated patients. The follow-up of patients in epidemic areas has identified frequent, long-lasting, rheumatic disorders, including rare inflammatory joint destruction, and common chronic mood changes associated with quality-of-life impairment. Thus, the globalization of CHIKV exposes countries with Aedes mosquitoes both to brutal outbreaks of acute incapacitating episodes and endemic long-lasting disorders

    Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1

    Get PDF
    We recently identified human P-selectin glycoprotein ligand-1 (PSGL-1) as a functional enterovirus 71 (EV71) receptor and demonstrated PSGL-1-dependent replication for some EV71 strains in human leukocytes. Here, we report that four out of five PSGL-1-binding strains of EV71 replicated poorly in mouse L929 cells stably expressing human PSGL-1 (L-PSGL-1 cells). Therefore, we compared the replication kinetics and entire genomic sequence of five original EV71 strains and the corresponding EV71 variants (EV71-LPS), which were propagated once in L-PSGL-1 cells. Direct sequence comparison of the entire genome of the original EV71 strains and EV71-LPS variants identified several possible adaptive mutations during the course of replication in L-PSGL-1 cells, including a putative determinant of the adaptive phenotype in L-PSGL-1 cells at VP2-149. The results suggest that an adaptive mutation, along with a PSGL-1-binding phenotype, may facilitate efficient PSGL-1-dependent replication of the EV71 strains in L-PSGL-1 cells

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
    • …
    corecore