596 research outputs found
ABC Effect in Basic Double-Pionic Fusion --- Observation of a new resonance?
We report on a high-statistics measurement of the basic double pionic fusion
reaction over the energy region of the so-called ABC
effect, a pronounced low-mass enhancement in the -invariant mass
spectrum. The measurements were performed with the WASA detector setup at COSY.
The data reveal the ABC effect to be associated with a Lorentzian shaped energy
dependence in the integral cross section. The observables are consistent with a
resonance with in both and systems.
Necessary further tests of the resonance interpretation are discussed
Measurement of the Reaction in Search for the Recently Observed Resonance Structure in and systems
Exclusive measurements of the quasi-free reaction have
been performed by means of collisions at = 1.2 GeV using the WASA
detector setup at COSY. Total and differential cross sections have been
obtained covering the energy region = (2.35 - 2.46) GeV, which
includes the region of the ABC effect and its associated resonance structure.
No ABC effect, {\it i.e.} low-mass enhancement is found in the
-invariant mass spectrum -- in agreement with the constraint from
Bose statistics that the isovector pion pair can not be in relative s-wave. At
the upper end of the covered energy region -channel processes for Roper,
and excitations provide a reasonable description
of the data, but at low energies the measured cross sections are much larger
than predicted by such processes. Adding a resonance amplitude for the
resonance at =~2.37 GeV with =~70 MeV and observed
recently in and reactions leads to an
agreement with the data also at low energies
Intracellular mGluR5 plays a critical role in neuropathic pain
Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca(2+) responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain
Cross section ratio and angular distributions of the reaction p + d -> 3He + eta at 48.8 MeV and 59.8 MeV excess energy
We present new data for angular distributions and on the cross section ratio
of the p + d -> 3He + eta reaction at excess energies of Q = 48.8 MeV and Q =
59.8 MeV. The data have been obtained at the WASA-at-COSY experiment
(Forschungszentrum J\"ulich) using a proton beam and a deuterium pellet target.
While the shape of obtained angular distributions show only a slow variation
with the energy, the new results indicate a distinct and unexpected total cross
section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the
variation of the production mechanism within this energy interval.Comment: 9 pages, 9 figure
Evidence for a New Resonance from Polarized Neutron-Proton Scattering
Exclusive and kinematically complete high-statistics measurements of
quasifree polarized scattering have been performed in the energy
region of the narrow resonance structure with , 2380 MeV/ and 70 MeV observed recently in the
double-pionic fusion channels and .
The experiment was carried out with the WASA detector setup at COSY having a
polarized deuteron beam impinged on the hydrogen pellet target and utilizing
the quasifree process . That way the
analyzing power was measured over a large angular range. The obtained
angular distributions deviate systematically from the current SAID SP07
NN partial-wave solution. Incorporating the new data into the SAID
analysis produces a pole in the waves as expected from the
resonance hypothesis
Removing krypton from xenon by cryogenic distillation to the ppq level
The XENON1T experiment aims for the direct detection of dark matter in a
cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired
sensitivity, the background induced by radioactive decays inside the detector
has to be sufficiently low. One major contributor is the -emitter
Kr which is an intrinsic contamination of the xenon. For the XENON1T
experiment a concentration of natural krypton in xenon Kr/Xe < 200
ppq (parts per quadrillion, 1 ppq = 10 mol/mol) is required. In this
work, the design of a novel cryogenic distillation column using the common
McCabe-Thiele approach is described. The system demonstrated a krypton
reduction factor of 6.410 with thermodynamic stability at process
speeds above 3 kg/h. The resulting concentration of Kr/Xe < 26 ppq
is the lowest ever achieved, almost one order of magnitude below the
requirements for XENON1T and even sufficient for future dark matter experiments
using liquid xenon, such as XENONnT and DARWIN
Search for the eta-mesic 4He with WASA-at-COSY detector
An exclusive measurement of the excitation function for the dd->3Heppi-
reaction was performed at the Cooler Synchrotron COSY-Juelich with the
WASA-at-COSY detection system. The data were taken during a slow acceleration
of the beam from 2.185 GeV/c to 2.400 GeV/c crossing the kinematic threshold
for the eta meson production in the dd->4He-eta reaction at 2.336 GeV/c. The
corresponding excess energy with respect to the 4He-eta system varied from
-51.4MeV to 22MeV. The integrated luminosity in the experiment was determined
using the dd->3Hen reaction. The shape of the excitation function for the
dd->3Heppi- was examined. No signal of the 4He-eta bound state was observed. An
upper limit for the cross-section for the bound state formation and decay in
the process dd->(4He-eta)bound->3Heppi- was determined on the 90% confidence
level and it varies from 20nb to 27nb for the bound state width ranging from
5MeV to 35MeV, respectively.Comment: 8 pages, 9 figure
Neutron-Proton Scattering in the Context of the (2380) Resonance
New data on quasifree polarized neutron-proton scattering, in the region of
the recently observed resonance structure, have been obtained by
exclusive and kinematically complete high-statistics measurements with WASA at
COSY. This paper details the determination of the beam polarization, checks of
the quasifree character of the scattering process, on all obtained
angular distributions and on the new partial-wave analysis, which includes the
new data producing a resonance pole in the - coupled partial
waves at () MeV -- in accordance with the dibaryon
resonance hypothesis. The effect of the new partial-wave solution on the
description of total and differential cross section data as well as specific
combinations of spin-correlation and spin-transfer observables available from
COSY-ANKE measurements at = 2.27 GeV is discussed
- …
