1,236 research outputs found

    The Origin of Massive Compact Galaxies: Lessons from IllustrisTNG

    Full text link
    We investigate the formation and evolution of z=0 massive compact galaxies (MCGs) in the IllustrisTNG cosmological simulation. We found that, as in observations, MCGs are mainly old (median age 10.8\sim 10.8 Gyr), have super-solar metallicities (median logZ/Z0.35\log Z/Z_{\odot}\sim0.35) and are α\alpha-enhanced (median [α/Fe]0.25[\alpha/Fe]\sim0.25). The age distribution extends to younger ages, however, and a few MCGs are as young as 7\sim7 Gyr. In general, MCGs assemble their mass early and accrete low angular momentum gas, significantly increasing their mass while growing their size much slower. A small fraction of MCGs follow another evolutionary path, going through a compaction event, with their sizes shrinking by 40% or more. The accretion of low angular momentum gas leads to enhanced SMBH growth, and MCGs reach the threshold SMBH mass of logMBH108.5M\log M_\mathrm{BH}\sim10^{8.5} M_\odot - when kinetic AGN feedback kicks in and quenches the galaxy - earlier than non-compact galaxies. Comparing MCGs to a sample of median-sized quiescent galaxies matched in effective velocity dispersion, we find that their accretion histories are very different. 71% of MCGs do not merge after quenching compared to 37% of median-sized quiescent galaxies. Moreover, tracing these populations back in time, we find that at least a third of median-sized quiescent galaxies do not have a compact progenitor, underscoring that both dry mergers and progenitor bias effects are responsible for the differences in the kinematics and stellar population properties of MCGs and median-sized quiescent galaxies.Comment: 15 pages, 15 figures (not including appendices). Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling

    Get PDF
    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    Get PDF
    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane

    Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    Get PDF
    This work was supported by the EPSRC grant EP/ J004200/1. D.F. acknowledges financial support from the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013)/ERC GA 306559 and EPSRC (UK, Grant No. EP/J00443X/1). L.C. and M.C. acknowledge the support from the People Programme (Marie Curie Actions) of the European Union’s FP7 Programme THREEPLE (GA 627478) and KOHERENT (GA 299522). A.C. and C.R. acknowledge support from U.S. Army International Technology Center Atlantic for financial support (Grant No. W911NF-14-1-0315).Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.Publisher PDFPeer reviewe

    The World Association against Infection in Orthopaedics and Trauma (WAIOT) procedures for Microbiological Sampling and Processing for Periprosthetic Joint Infections (PJIs) and other Implant-Related Infections

    Get PDF
    While implant-related infections continue to play a relevant role in failure of implantable biomaterials in orthopaedic and trauma there is a lack of standardised microbiological procedures to identify the pathogen(s). The microbiological diagnosis of implant-related infections is challenging due to the following factors: the presence of bacterial biofilm(s), often associated with slow-growing microorganisms, low bacterial loads, previous antibiotic treatments and, possible intra-operative contamination. Therefore, diagnosis requires a specific set of procedures. Based on the Guidelines of the Italian Association of the Clinical Microbiologists (AMCLI), the World Association against Infection in Orthopaedics and Trauma has drafted the present document. This document includes guidance on the basic principles for sampling and processing for implant-related infections based on the most relevant literature. These procedures outline the main microbiological approaches, including sampling and processing methodologies for diagnostic assessment and confirmation of implant-related infections. Biofilm dislodgement techniques, incubation time and the role of molecular approaches are addressed in specific sections. The aim of this paper is to ensure a standardised approach to the main microbiological methods for implant-related infections, as well as to promote multidisciplinary collaboration between clinicians and microbiologists

    CMOS compatible integrated all-optical radio frequency spectrum analyzer

    Get PDF
    We report an integrated all-optical radio frequency spectrum analyzer based on a ~4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahighrepetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other technique

    Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip

    Get PDF
    We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance

    Integrated frequency comb source of heralded single photons

    Get PDF
    We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels

    Enhanced nonlinear refractive index in ε-near-zero materials

    Get PDF
    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n2) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.Publisher PDFPeer reviewe
    corecore