342 research outputs found

    Hong-Ou-Mandel interferometry on a biphoton beat note

    Get PDF
    Hong-Ou-Mandel interference, the fact that identical photons that arrive simultaneously on different input ports of a beam splitter bunch into a common output port, can be used to measure optical delays between different paths. It is generally assumed that great precision in the measurement requires that photons contain many frequencies, i.e., a large bandwidth. Here we challenge this well-known assumption and show that the use of two well-separated frequencies embedded in a quantum entangled state (discrete color entanglement) suffices to achieve great precision. We determine optimum working points using a Fisher Information analysis and demonstrate the experimental feasibility of this approach by detecting thermally-induced delays in an optical fiber. These results may significantly facilitate the use of quantum interference for quantum sensing, by avoiding some stringent conditions such as the requirement for large bandwidth signals

    Ramsey interference with single photons

    Full text link
    Interferometry using discrete energy levels in nuclear, atomic or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy and laser/maser technology. It also plays a unique role in quantum information processing as qubits are realized as energy superposition states of single quantum systems. Here, we demonstrate quantum interference of different energy states of single quanta of light in full analogy to energy levels of atoms or nuclear spins and implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements, which allows for the realization a high-visibility single-photon Ramsey interferometer. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communication.Comment: 16 page

    Real-Time Imaging of Quantum Entanglement

    Get PDF
    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.Comment: Two supplementary movies available at the data conservancy projec

    Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources

    Full text link
    Single-photon sources based on optical parametric processes have been used extensively for quantum information applications due to their flexibility, room-temperature operation and potential for photonic integration. However, the intrinsically probabilistic nature of these sources is a major limitation for realizing large-scale quantum networks. Active feedforward switching of photons from multiple probabilistic sources is a promising approach that can be used to build a deterministic source. However, previous implementations of this approach that utilize spatial and/or temporal multiplexing suffer from rapidly increasing switching losses when scaled to a large number of modes. Here, we break this limitation via frequency multiplexing in which the switching losses remain fixed irrespective of the number of modes. We use the third-order nonlinear process of Bragg scattering four-wave mixing as an efficient ultra-low noise frequency switch and demonstrate multiplexing of three frequency modes. We achieve a record generation rate of 4.6×1044.6\times10^4 multiplexed photons per second with an ultra-low g2(0)g^{2}(0) = 0.07, indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB independent of the number of multiplexed modes, such that the 4.8 dB enhancement from multiplexing three frequency modes markedly overcomes switching loss. Our approach offers a highly promising path to creating a deterministic photon source that can be integrated on a chip-based platform.Comment: 28 pages, 9 figures. Comments welcom

    On the equivalence of Clauser-Horne and Eberhard inequality based tests

    Full text link
    Recently, the results of the first experimental test for entangled photons closing the detection loophole (also referred to as the fair sampling loophole) were published (Vienna, 2013). From the theoretical viewpoint the main distinguishing feature of this long-aspired experiment was that the Eberhard inequality was used. Almost simultaneously another experiment closing this loophole was performed (Urbana-Champaign, 2013) and it was based on the Clauser-Horne inequality (for probabilities). The aim of this note is to analyze the mathematical and experimental equivalence of tests based on the Eberhard inequality and various forms on the Clauser-Horne inequality. The structure of the mathematical equivalence is nontrivial. In particular, it is necessary to distinguish between algebraic and statistical equivalence. Although the tests based on these inequalities are algebraically equivalent, they need not be equivalent statistically, i.e., theoretically the level of statistical significance can drop under transition from one test to another (at least for finite samples). Nevertheless, the data collected in the Vienna-test implies not only a statistically significant violation of the Eberhard inequality, but also of the Clauser-Horne inequality (in the ratio-rate form): for both a violation >60σ.>60\sigma.Comment: a few misprints were correcte
    • …
    corecore