1,413 research outputs found

    Development of concepts for a zero-fossil-energy greenhouse

    Get PDF
    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The concept is called the zero-fossil-energy-greenhouse. This paper presents a theoretical design study and analysis to assess the viability of a zero-fossil-energy-greenhouse concept. The greenhouse was designed for Dutch circumstances and relies on available state-of-art technologies. Nine concepts were generated and evaluated by a panel of experts. Although, none of the concepts was unanimously selected, one of the concepts received on-average highest votes. It uses an aquifer for long term heat and cold storage. Geothermal heat and a heat pump connected to the warm pit of the aquifer are used to heat of the greenhouse. Electricity need is covered by green-electricity. Cooling and dehumidification of the greenhouse is realised by a heat pump combined with the cold aquifer pit. This concept was more thoroughly evaluated in a simulation study that assessed design consistency and evaluated greenhouse performance in view of design requirements. From the simulations it was concluded that a combination of geothermal heat and a heat pump/aquifer can cover the heat demand of the greenhouse with help of heat buffers, but a fully closed greenhouse concept is not manageable in the summer season. With given technology the chosen concept was not able to cool and dehumidify greenhouse air to target temperature and humidity. A semi closed greenhouse solves this problem

    Extinction map of the Small Magellanic Cloud based on SIRIUS and 6X 2MASS point source catalogs

    Get PDF
    In this paper, we present the first extinction map of the Small Magellanic Cloud (SMC) constructed using the color excess at near-infrared wavelengths. Using a new technique named "X percentile method", which we developed recently to measure the color excess of dark clouds embedded within a star distribution, we have derived an E(J – H) map based on the SIRIUS and 6X Two Micron All Sky Survey (2MASS) star catalogs. Several dark clouds are detected in the map derived from the SIRIUS star catalog, which is deeper than the 6X 2MASS catalog. We have compared the E(J – H) map with a model calculation in order to infer the locations of the clouds along the line of sight, and found that many of them are likely to be located in or elongated toward the far side of the SMC. Most of the dark clouds found in the E(J – H) map have counterparts in the CO clouds detected by Mizuno et al. with the NANTEN telescope. A comparison of the E(J – H) map with the virial mass derived from the CO data indicates that the dust-to-gas ratio in the SMC varies in the range A_V /N_H = 1-2 × 10^(–22) mag H^-1 cm^2 with a mean value of ~1.5 × 10^(–22) mag H^-1 cm^2. If the virial mass underestimates the true cloud mass by a factor of ~2, as recently suggested by Bot et al., the mean value would decrease to ~8×10^(–23) mag H^-1 cm^2, in good agreement with the value reported by Gordon et al., 7.59 × 10^(–23) mag H^-1 cm^2

    A New Galactic Extinction Map of the Cygnus Region

    Full text link
    We have made a Galactic extinction map of the Cygnus region with 5' spatial resolution. The selected area is 80^\circ to 90^\circ in the Galactic longitude and -4^\circ to 8^\circ in the Galactic latitude. The intensity at 140 \mum is derived from the intensities at 60 and 100 \mum of the IRAS data using the tight correlation between 60, 100, and 140 \mum found in the Galactic plane. The dust temperature and optical depth are calculated with 5' resolution from the 140 and 100 \mum intensity, and Av is calculated from the optical depth. In the selected area, the mean dust temperature is 17 K, the minimum is 16 K, and the maximum is 30 K. The mean Av is 6.5 mag, the minimum is 0.5 mag, and the maximum is 11 mag. The dust temperature distribution shows significant spatial variation on smaller scales down to 5'. Because the present study can trace the 5'-scale spatial variation of the extinction, it has an advantage over the previous studies, such as the one by Schlegel, Finkbeiner, & Davis, who used the COBE/DIRBE data to derive the dust temperature distribution with a spatial resolution of 1^\circ. The difference of Av between our map and Schlegel et al.'s is \pm 3 mag. A new extinction map of the entire sky can be produced by applying the present method.Comment: 27 pages, 14 figures, accepted for publication in Ap

    An investigation of factors affecting early foreign language learning in the Netherlands

    Get PDF

    Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes

    Full text link
    Scientific exploitation of the ever increasing volumes of astronomical data requires efficient and practical methods for data access, visualisation, and analysis. Hierarchical sky tessellation techniques enable a multi-resolution approach to organising data on angular scales from the full sky down to the individual image pixels. Aims. We aim to show that the Hierarchical progressive survey (HiPS) scheme for describing astronomical images, source catalogues, and three-dimensional data cubes is a practical solution to managing large volumes of heterogeneous data and that it enables a new level of scientific interoperability across large collections of data of these different data types. Methods. HiPS uses the HEALPix tessellation of the sphere to define a hierarchical tile and pixel structure to describe and organise astronomical data. HiPS is designed to conserve the scientific properties of the data alongside both visualisation considerations and emphasis on the ease of implementation. We describe the development of HiPS to manage a large number of diverse image surveys, as well as the extension of hierarchical image systems to cube and catalogue data. We demonstrate the interoperability of HiPS and Multi-Order Coverage (MOC) maps and highlight the HiPS mechanism to provide links to the original data. Results. Hierarchical progressive surveys have been generated by various data centres and groups for ~200 data collections including many wide area sky surveys, and archives of pointed observations. These can be accessed and visualised in Aladin, Aladin Lite, and other applications. HiPS provides a basis for further innovations in the use of hierarchical data structures to facilitate the description and statistical analysis of large astronomical data sets.Comment: 21 pages, 6 figures. Accepted for publication in Astronomy & Astrophysic

    Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Get PDF
    A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display

    The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk

    Get PDF
    Changes in the physicochemical properties and distribution of constituents in skim milk during microfiltration (MF) at low temperature influence filtration performance and product composition. In this study, the influence of processing temperature within the cold MF range (4, 8 and 12 °C) on filtration performance, fouling and partitioning of proteins was investigated. MF at 4 °C required the greatest energy input due to the significantly higher (p < 0.05) viscosity of feed and retentate streams, compared to processing at 8 and 12 °C. The greatest and lowest extents of reversible and irreversible fouling during MF were observed on filtration at 12 and 4 °C, respectively. Chemical analysis of the cleaning solutions post-processing demonstrated that protein was the major foulant; the lowest protein content in the recovered cleaning solutions (50 °C water and 55 °C alkali) was measured after MF at 4 °C. The concentration of ÎČ-casein, ÎČ-lactoglobulin and α-lactalbumin in the permeate all decreased throughout MF, due to fouling of the membrane. The greatest decrease in concentration of ÎČ-casein in the permeate during MF was observed at 12 °C (18.1%) followed by 8 °C (17.1%) and 4 °C (13.6%). The results of this study provide valuable information on processing efficiency (i.e., energy consumption and protein yield) and membrane fouling during the processing of skim milk in the cold MF range

    Influence of pH adjustment on physicochemical properties of microfiltration retentates of skim milk and rehydration properties of resulting powders

    Get PDF
    Effects of pH adjustment on physicochemical properties of microfiltration retentates of skim milk and rehydration of resulting micellar casein concentrate (MCC) powders were investigated. Aliquots of retentate (pH 6.9) were adjusted to pH 7.3, 7.6 or 7.6 followed by readjustment to pH 6.9 (6.9R) prior to powder preparation. The retentates with pH 6.9, 7.3, and 7.6 had casein micelle size of 179, 189 and 197 nm, respectively, while sample 6.9R had size of 183 nm, similar to retentate at pH 6.9. Higher retentate pH resulted in lower ionic calcium and higher conductivity, with sample 6.9R having higher values for both parameters than the pH 6.9 sample. The MCC powders displayed poorer wettability and enhanced dispersibility with increasing retentate pH. Interestingly, the 6.9R powder had the best wettability and dispersibility. This study demonstrated that pH-mediated modifications of the physicochemical properties of retentates improve the rehydration properties of resultant MCC powders

    Farkas-Type Results for Vector-Valued Functions with Applications

    Get PDF
    The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.This research was partially supported by MINECO of Spain and FEDER of EU, Grant MTM2014-59179-C2-1-P, by the project DP160100854 from the Australian Research Council, and by the project B2015-28-04: “A new approach to some classes of optimization problems” from the Vietnam National University - HCM city, Vietnam

    Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud

    Get PDF
    Context. Herschel provides crucial constraints on the IR SEDs of galaxies, allowing unprecedented accuracy on the dust mass estimates. However, these estimates rely on non-linear models and poorly-known optical properties. Aims. In this paper, we perform detailed modelling of the Spitzer and Herschel observations of the LMC, in order to: (i) systematically study the uncertainties and biases affecting dust mass estimates; and to (ii) explore the peculiar ISM properties of the LMC. Methods. To achieve these goals, we have modelled the spatially resolved SEDs with two alternate grain compositions, to study the impact of different submillimetre opacities on the dust mass. We have rigorously propagated the observational errors (noise and calibration) through the entire fitting process, in order to derive consistent parameter uncertainties. Results. First, we show that using the integrated SED leads to underestimating the dust mass by ≃50% compared to the value obtained with sufficient spatial resolution, for the region we studied. This might be the case, in general, for unresolved galaxies. Second, we show that Milky Way type grains produce higher gas-to-dust mass ratios than what seems possible according to the element abundances in the LMC. A spatial analysis shows that this dilemma is the result of an exceptional property: the grains of the LMC have on average a larger intrinsic submm opacity (emissivity index ÎČ â‰ƒ 1.7 and opacity Îș_(abs)(160 ÎŒm) = 1.6 m^2   kg^(-1)) than those of the Galaxy. By studying the spatial distribution of the gas-to-dust mass ratio, we are able to constrain the fraction of unseen gas mass between ≃10, and ≃100% and show that it is not sufficient to explain the gas-to-dust mass ratio obtained with Milky Way type grains. Finally, we confirm the detection of a 500 ÎŒm extended emission excess with an average relative amplitude of ≃15%, varying up to 40%. This excess anticorrelates well with the dust mass surface density. Although we do not know the origin of this excess, we show that it is unlikely the result of very cold dust, or CMB fluctuations
    • 

    corecore