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Abstract

The main purpose of this paper consists of providing characterizations of the inclusion
of the solution set of a given conic system posed in a real locally convex topological space
into a variety of subsets of the same space de�ned by means of vector-valued functions.
These Farkas-type results are used to derive characterizations of the weak solutions of vec-
tor optimization problems (including multiobjective and scalar ones), vector variational
inequalities, and vector equilibrium problems.

1 Introduction

In this paper we consider an optimization problem posed in a real locally convex Hausdor¤
topological vector space (lcHtvs in short) X; called space of decisions, with a vector-valued
objective function f to be minimized on a feasible set ; 6= A � X with respect to a given
weak partial ordering on a second lcHtvs Y; called space of criteria, enlarged with a smallest
element �1Y and a greatest element +1Y : The weak ordering on the extended space of
criteria Y � := Y [ f�1Y ;+1Y g is de�ned from a given pointed convex cone with non-
empty interior K � Y and the task "minimize" consists of computing the weak in�mum of
the set f (A) in the sense of [25, p. 93] (see also [3, p. 366]). Particular cases of this vector
optimization problem are the multiobjective problem, where Y = Rp and K = Rp+; with
p � 2; and the scalar optimization problem, where Y = R and K = R+:
Di¤erent reasons for using a weak ordering in vector optimization are pointed out by

many authors. From [16, p. 1421] we quote the following sentence: "The advantages and
disadvantages of the di¤erent concepts [of solutions] are severely discussed among experts.
E¢ cient solutions are usually motivated by applications and weakly or properly e¢ cient
solutions are motivated to be bene�cial for the theory and sometimes easier to calculate".
In particular, in multiobjective optimization they are characterized and computed by means
of scalarization (assigning weights to the di¤erent objectives). Moreover, weak orders are
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essential in the construction of a complete lattice, giving rise to a conjugate duality approach
for set-valued optimization problems which is considerably close to the conjugate duality for
scalar optimization problems (see, for instance, [3, p. 360]). Conjugate maps and Farkas-type
results are crucial in any duality theory, and this is why they constitute the main tool and
the main objective, respectively, of our research. The state of the art in vector optimization
is described, e.g., in [3], [16], [18], [23], and references therein.

The Farkas-type results are well-known basic theoretical tools in scalar optimization. The
classical Farkas lemma [15] characterizes the containment of a polyhedral convex cone A into
a given half-space whose boundary contains the origin. The non-homogeneous version of
this famous result [24] characterizes the containment of a polyhedral convex set into a given
half-space and was used in the mid 1900s to provide simple proofs of the duality theorem
of linear programming and the KKT optimality theorem of non-linear programming. Since
then, many Farkas-type results have been proposed to characterize the inclusion of a give set
A; described by some kind of system, into another set B; typically the solution set of a single
inequality, in order to obtain optimality and duality theorems in di¤erent frameworks (see,
e.g. the survey papers [8], [19], [20] and references therein). A Farkas-type result is called
asymptotic whenever the characterization of A � B involves the closure of certain sets, it is
called PA / PB whenever PA and PB are properties satis�ed by A and B; e.g., convexity, non-
convexity or being the inverse image by some function of �nitely many complements of convex
sets (reverse-convexity in brief). In particular, each convex / reverse-convex non-asymptotic
Farkas�lemma provides a di¤erent optimality theorem of the KKT-type.

The objective of this paper is to provide Farkas-type results for vector optimization and to
show that, like their scalar counterparts in scalar optimization, these results have interesting
applications in vector optimization and other �elds.

Section 2 contains the necessary preliminaries on epigraphical calculus with scalar func-
tions, calculus rules for the extrema of sets in the sense of [25], and the de�nitions of conju-
gate and subdi¤erential of vector-valued maps. In Section 3 we characterize the inclusion of
A = fx 2 C : g (x) 2 �Sg ; where ; 6= C � X, S is a convex cone in Z (a third lcHtvs), and
g : X ! Z; into the reverse-convex set B := Y� (� intK) : Since A is generally non-convex
and the characterizations of A � B include closures, Theorems 3.1 and 3.2 are asymptotic
non-convex / reverse-convex Farkas�lemmas. From these two main results we obtain asymp-
totic non-convex / linear and convex / reverse-convex Farkas� lemmas as well as a stable
convex / reverse-convex Farkas� lemma, where the term stability means that the inclusion
A � B is preserved by arbitrary linear perturbations of the convex function de�ning the
reverse-convex set B: Section 4 provides reverse and non-asymptotic Farkas-type results, sta-
ble or not, under alternative quali�cation conditions involving the data. Section 5 is devoted
to the characterization of the weak solutions of vector optimization problems, paying atten-
tion to some particular types (scalar and multiobjective, constrained and unconstrained) of
optimization problems. Finally, Section 6 provides applications to vector variational inequal-
ities and vector equilibrium problems.

2 Preliminaries

LetX be a lcHtvs, whose origin is denoted by 0X , and with topological dual space represented
by X�. The only topology we consider on dual spaces is the weak�-topology. For a set U � X,
we denote by clU , coU , and cl coU the closure, the convex hull, and the closed convex hull of
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U , respectively. Note that cl coU = cl(coU):We assume that all the cones under consideration
contain the origin of the corresponding space.

Given f : X ! R [ f�1g, the epigraph of f is the set

epi f := f(x; r) 2 X � R : x 2 dom f; f(x) � rg;

where dom f := fx 2 X : f(x) 6= +1g: The function is said to be proper if epi f 6= ; and
�1 =2 f (X) ; it is convex if epi f is convex, and it is lower semicontinuous (lsc, in brief) if
epi f is closed. We denote by � (X) the class of lsc proper convex functions on X.

The Legendre-Fenchel conjugate of f is the weak�-lsc convex function f� : X� ! R :=
R [ f�1;+1g de�ned by

f� (x�) = sup
x2X

(hx�; xi � f (x)) ; 8x� 2 X�: (2.1)

Let f1; f2 2 � (X) be such that (dom f1) \ (dom f2) 6= ;: Then

epi(f1 + f2)
� = cl (epi f�1 + epi f

�
2 ) ; (2.2)

and, if one of these functions is continuous at a point in the intersection of their domains, we
actually have [26, (2.63)]

epi (f1 + f2)
� = epi f�1 + epi f

�
2 : (2.3)

Let ffi; i 2 Ig � � (X), where I is an arbitrary index set, and suppose that there exists
x0 2 X such that sup

i2I
fi(x0) < +1: Then one has [22, Lemma 2.2]

epi

�
sup
i2I

fi

��
= cl co

 [
i2I
epi f�i

!
: (2.4)

Now we extend the above concepts to vector-valued functions as it is done in [3] and
[25]. Let Y be a second lcHtvs, with origin 0Y and topological dual space Y �. Let K be a
nonempty, closed and pointed convex cone in Y with nonempty interior, i.e., intK 6= ;. We
now de�ne a weak ordering in Y , associated with intK, in the following way:

y1 <K y2 if and only if y1 � y2 2 �intK:

Equivalently, y1 �K y2 if and only if y1 � y2 =2 �intK:
We enlarge Y by attaching a greatest element +1Y and a smallest element �1Y with

respect to <K , which do not belong to Y , and we denote Y � := Y [ f�1Y ; +1Y g. By
convention, �1Y <K y and y <K (+1Y ) for any y 2 Y . We also assume by convention
that

�(+1Y ) = �1Y ; �(�1Y ) = +1Y ;

(+1Y ) + y = y + (+1Y ) = +1Y ; for all y 2 Y [ f+1Y g; (2.5)

(�1Y ) + y = y + (�1Y ) = �1Y ; for all y 2 Y [ f�1Y g:

The sums (�1Y ) + (+1Y ) and (+1Y ) + (�1Y ) are not considered in this paper.

Given a vector-valued mapping f : X ! Y �, the domain of f is de�ned by

dom f := fx 2 X : f(x) 6= +1Y g;
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and f is proper when dom f 6= ; and �1Y =2 f(X): The K�epigraph of f , denoted by
epiK f , is de�ned by

epiK f = f(x; y) 2 X � Y : y 2 f(x) +Kg :

Moreover, we say that f is K�epi closed when epiK f is a closed set in the product space,
and also that f is K�convex, i.e., epiK f is a convex set (equivalently, if for any x1, x2 2 X
and � 2 [0; 1] one has f(�x1 + (1� �)x2)� �f(x1)� (1� �)f(x2) 2 �K).
Given M � Y � we shall recall the following de�nitions (e.g. [3, De�nition 7.4.1]):

De�nition 2.1 (a) An element �v 2 Y � is said to be a weakly in�mal element of M if for
all v 2 M we have v �K �v and if for any ev 2 Y � such that �v <K ev, then there exists some
v 2M satisfying v <K ev. The set of all weakly in�mal elements of M is denoted by WInfM
and it is called the weak in�mum of M .
(b) An element �v 2 Y � is said to be a weakly supremal element of M if for all v 2 M
we have �v �K v; and if for any ev 2 Y � such that ev <K �v, then there exists some v 2 M
satisfying ev <K v. The set of all weakly supremal elements of M is denoted by WSupM and
it is called the weak supremum of M .

De�nition 2.2 (a) The weak minimum of M is the set

WMinM =M \WInfM;

and its elements are the weakly minimal elements of M:
(b) The weak maximum of M is the set

WMaxM =M \WSupM;

and its elements are the weakly maximal elements of M:

Remark 2.1 (a) For any M � Y , thanks to the conventions �1Y <K y and y <K (+1Y )
for any y 2 Y , it is easy to check thatWInfM = WInf(M[f+1Y g);WMinM = WMin(M[
f+1Y g); WSupM = WSup(M [ f�1Y g) and WMaxM = WMax(M [ f�1Y g):
(b) If M 6= ;, since v <K (+1Y ) for all v 2 M; +1Y =2 WInfM (similarly, �1Y =2
WSupM). Otherwise, if M = ;, and according to the de�nition, WInfM = f+1Y g and
WSupM = f�1Y g [3, Remark 7.4.1].
(c) (Y �; <K) turns out to be a complete lattice.
(d) If M 6= ;, it is easy to see that if WSupM 6= f+1Y g then �v 2 WSupM if and only if
�v 2 Y n (M � intK) and �v � intK � M � intK (similarly, if WInfM 6= f�1Y g then
�v 2WInfM if and only if �v 2 Y n (M + intK) and �v + intK � M + intK):

Recall (e.g., from [1, Lemma 5.3]) that, given two nonempty sets N;V � Y such that V is
open, one has

clN + V = N + V: (2.6)

If K is a nonempty convex closed cone in Y with nonempty interior, i.e., intK 6= ;; taking
in (2.6) N = V = intK, we get

K + intK = intK; (2.7)

and consequently,
y 2 K

y + y0 =2 intK

�
=) y0 =2 intK: (2.8)
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De�nition 2.3 Given ; 6= M � Y �; we de�ne the set A(M) of all points above M; and
the set B(M) of all points below M by

A(M) = f�v 2 Y � : v <K �v for some v 2Mg

and
B(M) = f�v 2 Y � : �v <K v for some v 2Mg :

Remark 2.2 (a) One has

A(M) =

8<:
Y [ f+1Y g ; if�1Y 2M;
;; if M = f+1Y g ;
f+1Y g [ (M + intK) ; otherwise,

(2.9)

and

B(M) =

8<:
Y [ f�1Y g ; if+1Y 2M;
;; if M = f�1Y g ;
f�1Y g [ (M � intK) ; otherwise.

(2.10)

(b) In particular,

�1Y =2M 6= f+1Y g =) A(M) = f+1Y g [ (M + intK); (2.11)

+1Y =2M 6= f�1Y g =) B(M) = f�1Y g [ (M � intK) : (2.12)

(c) Moreover, it is easy to check that

WSupM = f+1Y g () B(M) = Y [ f�1Y g
() +1Y 2M or M � intK = Y

()
�
8v 2 Y; 9ev 2M such that v <K ev�: (2.13)

Analogously, we can characterize the caseWInfM = f�1Y g. The �rst equivalence in (2.13)
is Proposition 2.2 (ii) in [25].

Lemma 2.1 Let ; 6=M � Y and �v 2 Y . Then

(�v � intK �M � intK) () �v 2 cl(M � intK):

Proof. [=)] Assume that �v � intK � M � intK and let U be a barrelled neighborhood
of 0Y . We will show that (�v + U) \ (M � intK) 6= ;. Take k0 2 intK (remember that
intK 6= ;). Then, there exists � > 0 such that ��k0 2 U . Since �k0 2 intK, we get
�v � �k0 2 �v � intK �M � intK, and hence, �v � �k0 2 (�v + U) \ (M � intK).
[(=] Assume that �v 2 cl(M�intK) and let k 2 intK. We will show that �v�k 2M�intK.

Since 0Y 2 �k + intK, there is a neighborhood U of 0Y such that U � �k + intK, and
hence, �v+U � �v� k+ intK. Now, as �v 2 cl(M � intK), (�v� k+ intK)\ (M � intK) 6= ;.
Therefore, �v � k + k0 2M � intK for some k0 2 intK, and so

�v � k 2M � intK � k0 �M � intK � intK �M � intK

(as intK is a convex cone), and we are done. �
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Proposition 2.1 Given ; 6= M � Y � such that +1Y =2 M 6= f�1Y g ; the following
statements hold:
(i) ; 6=WSupM � Y [ f+1Y g: If WSupM 6= f+1Y g, then

WSupM = fv 2 Y� (M � intK) : v � intK �M � intKg (2.14)

= cl (M � intK)� (M � intK) ;

in other words, WSupM is the boundary in Y of the set M � intK:
(ii) The weak maximum of M is

WMaxM =M� (M � intK) ; (2.15)

so that WMaxM is a closed (compact) set whenever M is a closed (compact, respectively)
set of Y:
(iii)

Y � = f�1Y g [ (M � intK) [ (WSupM) [ A (WSupM) :

Moreover, if WSupM 6= f+1Y g, then

Y = (M � intK) [ (WSupM) [ (WSupM + intK); (2.16)

and the three sets in the right-hand side are disjoint.
(iv) Let M � Y be such that clM = cl(intM) (e.g., if M is convex and intM 6= ;), then

WSup(intM) = WSupM = WSup(clM): (2.17)

Proof. The assumptions on M entail M \ Y 6= ;:
(i) It is obvious that WSupM 6= ; and �1Y =2 WSupM (see Remark 2.1(b)). Thus,

; 6= WSupM � Y [ f+1Y g and the �rst claim holds.

LetWSupM 6= f+1Y g or, equivalently (2.13), B(M) 6= Y [f�1Y g: The �rst equality in
(2.14) comes from Remark 2.1(d) and the assumption WSupM 6= f+1Y g; while the second
one comes from the �rst one and Lemma 2.1.

(ii) It is a straightforward consequence of WMaxM =M \WSupM:
(iii) According to Proposition 7.4.1(b)(d) in [3], and using (2.12),

Y � = (WSupM) [ B (WSupM) [ A (WSupM)
= (WSupM) [ B (M) [ A (WSupM)
= f�1Y g [ (M � intK) [ (WSupM) [ A (WSupM) : (2.18)

The �rst assertion in (iii) holds.

Assume now that WSupM 6= f+1Y g. Applying (2.11) to the set WSupM (note that
�1Y =2WSupM) we get

A (WSupM) = (WSupM + intK) [ f+1Y g : (2.19)

According to (2.18) and (2.19),

Y � = f�1Y g [ (M � intK) [ (WSupM) [ (WSupM + intK) [ f+1Y g

6



and dropping �1Y and +1Y in both sides we get (2.16), together with the conclusion that
the three sets in the right-hand side are disjoint (see again Proposition 7.4.1(d) in [3]).

(iv) It is a consequence of (2.14) and (2.6), applying the last one to the sets N := intM
and V := � intK: �

Observe that (2.14), (2.15) and (2.17) remain true by replacingWSup,WMax, and � intK
with WInf, WMin, and intK, respectively.

We denote by L(X;Y ) the space of linear continuous mappings from X to Y , and 0L 2
L(X;Y ) is the zero mapping de�ned by 0L(x) = 0Y for all x 2 X. Obviously, when Y = R
then L(X;Y ) = X�.

De�nition 2.4 Given f : X ! Y �; the set-valued map f� : L(X;Y )� Y � de�ned by

f�(L) := WSupfL(x)� f(x) : x 2 Xg �WSupf(L� f)(X)g;

is called the conjugate map of f . The domain of f� is

dom f� = fL 2 L(X;Y ) : f�(L) 6= f+1Y gg

and the K�epigraph of f� is

epiK f
� = f(L; y) 2 L(X;Y )� Y : y 2 f�(L) +Kg :

Remark 2.3 (a) In [25, De�nition 3.1] and in [3, De�nition 7.4.2] the conjugate map is
de�ned for a set-valued map F : X � Y �:
(b) In the scalar case, when Y = R and K = R+; the notion of conjugate map introduced in
De�nition 2.4 collapses to (2.1) just identifying y 2 R with fyg 2 2R:
(c) According to Remark 2.1(a), f�(L) = WSupf(L� f)(dom f)g: Moreover, by Proposition
2.1(i), f�(L) is the boundary of f(L � f)(dom f)g � intK if f is a proper function and
WSupf(L � f)(dom f)g 6= f+1Y g : The necessity of the latter assumption can be shown
by considering the �nite-valued function f : R! R such that f(x) = � jxj : In fact, given
L = x� 2 R, one has

(L� f)(dom f) = fx�x+ jxj : x 2 Rg =
�
R+; if x� 2 [�1; 1];
R; if x� =2 [�1; 1];

so that
f(L� f)(dom f)g � intK = R;

with
bd ff(L� f)(dom f)g � intKg = ; 6= f+1g = f� (L) :

Proposition 2.2 Let h : X ! Y � be proper and (L; y) 2 L(X;Y )� Y: The following impli-
cation holds

y + h(x) �K L(x) 8x 2 X =) (L; y) 2 epiK h�;

or equivalently

y + h(x)� L(x) =2 �intK 8x 2 X =) y 2 h�(L) +K:

7



Proof. Let h : X ! Y � be proper and (L; y) 2 L(X;Y )� Y be such that

y + h(x)� L(x) =2 �intK; for all x 2 X: (2.20)

Observe that (2.20) is equivalent to

y =2 (L� h) (domh)� intK; (2.21)

and then WSupf(L� h) (domh)g 6= f+1Y g: Indeed, assume the contrary, i.e., that

WSupf(L� h) (domh) = f+1Y g:

Then as y <K +1Y , by the de�nition of the weak supremum there exists �x 2 domh such
that

y <K L(�x)� h(�x);
or equivalently, there is �x 2 X satisfying

y + h(�x)� L(�x) 2 �intK;

which contradicts (2.20).

Now, since ; 6= (L� h) (domh) � Y and WSupf(L� h) (domh)g 6= f+1Y g, we get from
Proposition 2.1(iii) the following partition of Y :

Y = f(L� h) (domh)� intKg [WSupf(L� h) (domh))g
[ fWSupf(L� h) (domh)g+ intKg :

Then (2.21) yields

y 2WSupf(L� h) (domh)g [ fWSupf(L� h) (domh)g+ intKg
�WSupf(L� h) (domh)g+K
= h�(L) +K;

and we are done. 2

The following notion of subdi¤erential of a vector-valued function particularizes the cor-
responding one for set-valued maps given in [3, De�nition 7.4.2(c)] and in [25, De�nition
4.1].

De�nition 2.5 Given f : X ! Y � and �x 2 dom f , we say that L 2 L(X;Y ) is a subgradi-
ent of f at �x if

L(�x)� f(�x) 2WSupf(L� f)(X)g:
The set of all subgradients of f at �x is called subdi¤ erential of f at �x; and it is denoted by
@f(�x):

When Y = R and K = R+; the above de�nition of subdi¤erential of f at �x is nothing else
but the classical subdi¤erential of f at �x; i.e., x� 2 @f(�x) if only if f(x)� f(�x) � hx�; x� �xi
for all x 2 X.

Proposition 2.3 Given L 2 L(X;Y ) and �x 2 dom f; one has

L 2 @f(�x) () L(�x)� f(�x) 2WMaxf(L� f)(X)g
() L(�x)� f(�x) 2 f�(L)
() (L;L(�x)� f(�x)) 2 epiK f�:
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Proof. From De�nitions 2.2, 2.4 and 2.5,

L 2 @f(�x) () L(�x)� f(�x) 2WMaxfL(x)� f(x) : x 2 Xg
() L(�x)� f(�x) 2 f�(L)
=) (L;L(�x)� f(�x)) 2 epiK f�:

Now we assume that (L;L(�x)� f(�x)) 2 epiK f�: Then L(�x)�f(�x) 2 f�(L)+K; and there
exists k 2 K such that

L(�x)� f(�x)� k 2 f�(L) = WSupfL(x)� f(x) : x 2 Xg:

From the de�nition of WSup

L(�x)� L(x) + f(x)� f(�x)� k =2 �intK; 8x 2 X;

and it follows from (2.8) that

L(�x)� L(x) + f(x)� f(�x) =2 �intK; 8x 2 X:

Thus,
L(�x)� f(�x) 2WSupfL(x)� f(x) : x 2 Xg;

i.e. L 2 @f(�x): The proof is complete. �

Strong versions of the above notions of conjugate and subdi¤erential of a vector-valued
function can be found in the recent book [20].

3 Reverse and asymptotic Farkas-type results

Let X;Y and Z be lcHtvs, 0Z be the zero in Z, S be a nonempty convex cone in Z; and K
be a nonempty closed and pointed convex cone in Y with intK 6= ;. Let 5S be the ordering
on Z induced by the cone S, i.e.,

z1 5S z2 if and only if z1 � z2 2 �S:

We also enlarge Z by attaching a greatest element +1Z and a smallest element �1Z with
respect to 5S , which do not belong to Z, and de�ne Z� := Z [ f�1Z ; +1Zg. In Z� we
adopt the same sign conventions as in (2.5).

Let f : X ! Y [ f+1Y g ; g : X ! Z [ f+1Zg, and consider a nonempty set C � X.
In this paper we associate with the data triple (f; g; C) the constraint system

fx 2 C; g(x) 2 �Sg � fx 2 C; g(x) 5S 0Zg;

with associated feasible set
A := C \ g�1(�S);

and the vector optimization problem

(VOP) WMin ff(x) : x 2 C; g(x) 2 �Sg ; (3.1)
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whereWMin concerns the weak ordering on Y � associated with K: A feasible solution �x 2 A
is said to be a weak solution to (VOP) if

f(�x) 2WMin f(A):

We assume from now on that A\dom f 6= ;, in other words, (VOP) is feasible and non-trivial.
When Y = R and K = R+; we say that the data triple (f; g; C) is scalar. In that case

(VOP) collapses to the scalar optimization problem

(SOP) Min ff(x) : x 2 C; g(x) 2 �Sg ; (3.2)

where Min stands for the task consisting of identifying standard optimal solutions to (SOP).
Here Y � is nothing else than the extended real line R ordered by <R+while L 2 L(X;R) is
usually written as L = x� 2 X�:

When Y = Rp and K = Rp+; p � 2; we say that the data triple (f; g; C) is componentwise.
Then (VOP) becomes the multiobjective optimization problem

(MOP) �Min�ff(x) : x 2 C; g(x) 2 �Sg ; (3.3)

where �Min�stands for the task consisting of computing �x 2 A such that
�
f (�x)� Rp++

�
\

f (A) = ;; i.e., weakly e¢ cient solutions to (MOP); which coincide with the weak solutions
to (VOP). Here, given y = (y1; :::; yp) and y0 =

�
y01; :::; y

0
p

�
2 Rp;

y <Rp+ y
0 () yj < y

0
j ; 8j 2 f1; :::; pg;

and, consequently,

y �Rp+ y
0 () 9j0 2 f1; :::; pg such that yj0 � y0j0 :

In this paper we establish Farkas-type results from which we deduce necessary and su¢ cient
conditions for the existence of weak solutions to problem (VOP) and some particular instances
as (MOP) and (SOP). With this purpose, we provide next some fundamental results which
will be used in the following sections.

For T 2 L(Z; Y ), we de�ne the composite function T � g : X ! Y � as follows:

(T � g)(x) =
�
T (g(x)); if g(x) 2 Z;
+1Y ; if g(x) = +1Z :

The indicator map iD : X ! Y � of a set D � X is de�ned by

iD(x) =

�
0Y ; if x 2 D;
+1Y ; otherwise.

In the case Y = R, iD is the usual indicator function.
Let us consider

L+(S;K) := fT 2 L(Z; Y ) : T (S) � Kg:
If Y = R and K = R+ then L+(S;K) = S+, where S+ is the (positive) dual cone of S in the
sense of convex analysis, i.e.,

S+ = fz� 2 Z� : hz�; si � 0 for all s 2 Sg:

The sets of the form (f + iC + T � g)�(L); with T 2 L+(S;K) and L 2 L(X;Y ); play
an important role in this paper. The next example, to be used later, illustrates the way
to calculate analytically such sets when the three involved lctHtvs, X; Y; and Z; are �nite-
dimensional.
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Example 3.1 Let X = R; Y = R2; Z = R; K = R2+; S = R+; and C =] � 1;+1[. Let
f : R! R2 [ f+1R2g and g : R! R [ f+1g be such that

f(x) =

� �
0; 1x

�
; if x 6= 0;

+1R2 ; otherwise,
and g(x) =

�
� jx+1j

x ; if x 6= 0;
+1; otherwise.

The linear mappings T 2 L+(R+;R2+) and L 2 L(R;R2) can be represented as T (z) = (az; bz)
for all z 2 R; with a; b 2 R+; and L(x) = (cx; dx) for all x 2 R; with c; d 2 R: We now
calculate (f + iC + T � g)�(L) for one typical case where a > 0; 0 < b < 1; c = 0; d < 0; and
d < b� 1. One has

(f + iC + T � g)�(L) =
= WSup fL(x)� f(x)� (T � g)(x) : x 2 Cg (3.4)

= WSup

�
(0; dx)�

�
0;
1

x

�
+

�
ajx+ 1j
x

;
bjx+ 1j
x

�
: x 2 C�f0g

�
= WSup

��
a

�
x+ 1

x

�
; dx� 1

x
+ b

�
x+ 1

x

��
: x 2]� 1;+1[�f0g

�
= WSup

�
y 2 R2 : y2 =

�
b� 1
a

�
y1 + 1 +

da

y1 � a
; y1 < 0 or y1 > a

�
=

�
y 2 R2 : y2 =

(b� 1) y1
a

+ 1 +
da

y1 � a
; y1 < a+

ad

1� b or y1 > a+ a
p
�dp
1� b

�
[��

a+
ad

1� b ; 0
�
� f1� dg

�
[
�
f0g �

h
b� 2

p
d(b� 1); 1� d

i�
[��

0; a+ a

p
�dp
1� b

�
�
n
b� 2

p
d(b� 1)

o�
:

The set (f + iC + T � g)�(L) in (3.4); with a = 1; b = 1
2 ; c = 0; and d = �1 is represented in

Figure 1.

We are now in the position to prove the main results of this section: two versions of reverse
Farkas-lemma for vector-valued functions. Remember that we are assuming all the time that
the triple (f; g; C) satis�es A \ dom f 6= ; with A = C \ g�1(�S):

Theorem 3.1 (Reverse Farkas lemma I) Let (L; y) 2 L(X;Y ) � Y: Then, the following
statements are equivalent:
(a1) g(x) 2 �S; x 2 C =) f(x)� L(x) + y =2 �intK;
(b1) (L; y) 2 epiK(f + iA)�:

Proof. Taking h := f + iA one has domh = A\ dom f 6= ;: Then, by Proposition 2.2, the
following implication holds:

y + (f + iA)(x)� L(x) =2 �intK 8x 2 X =) y 2 (f + iA)�(L) +K: (3.5)

[(a1) =) (b1)] Assume (a1) holds, i.e.,

g(x) 2 �S; x 2 C =) f(x)� L(x) + y =2 �intK;

11



Figure 1: The set (f + iC +
�
1; 12
�
� g)�(0;�1)

or, equivalently,
y + (f + iA)(x)� L(x) =2 �intK;8x 2 X:

It then follows from (3.5) that (L; y) 2 epiK(f + iA)�:
[(b1) =) (a1)] Assume (b1) holds, i.e.,

y 2 (f + iA)�(L) +K:

This accounts for the existence of k 2 K such that

y � k 2 (f + iA)�(L) = WSupfL(x)� (f + iA)(x) : x 2 Xg:

By the de�nition of WSup one has

y � k � (L(x)� (f + iA)(x)) =2 �intK; 8x 2 X:

It follows from this and (2.8) that

y + (f + iA)(x)� L(x) =2 �intK; 8x 2 X;

which is equivalent to

g(x) 2 �S; x 2 C =) y + f(x)� L(x) =2 �intK:

The proof is complete. �

Theorem 3.2 (Reverse Farkas lemma II) Let �x 2 A\ dom f: The following statements
are equivalent:
(c1) g(x) 2 �S; x 2 C =) f(x)� f(�x) =2 �intK;
(d1) 0L 2 @(f + iA)(�x);
(e1) (0L;�f(�x)) 2 epiK (f + iA)�:
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Proof. [(c1) () (e1)] follows from Theorem 3.1 with L = 0L and y = �f(�x):
[(d1) () (e1)] follows from Proposition 2.3 applied to L = 0L and the function f + iA:

�

In the absence of the vector-valued function g (or, equivalently, when g (x) = 0Z for all
x 2 X), Theorem 3.2 yields the following immediate corollary:

Corollary 3.1 Let �x 2 C \ dom f . Then the following statements are equivalent:
(f1) f(x)� f(�x) =2 �intK 8x 2 C;
(g1) 0L 2 @(f + iC)(�x);
(h1) (0L;�f(�x)) 2 epiK(f + iC)�:

When we apply Theorem 3.2 to the scalar optimization problem (SOP), we obtain the
characterization of optimality given in the following corollary, which does not require the
classical closedness and convexity assumptions on C; f 2 � (X) ; and S�epi closedness and
S�convexity of g: It is worth noting that the �rst statement (i) in the next corollary means
that x is an optimal solution of (SOP).

Corollary 3.2 Let (f; g; C) be a given scalar triple and �x 2 A \ dom f . Then the following
statements are equivalent:
(i1) g(x) 2 �S; x 2 C =) f(x)� f(�x) � 0;
(j1) 0X� 2 @(f + iA)(�x);
(k1) (0X� ;�f(�x)) 2 epi(f + iA)�:

In the rest of this section we consider some special cases where the results above collapse
to several well-known asymptotic Farkas-type results in the literature ([6], [9]). These results
have been used to get optimality conditions, duality theorems, and set containment charac-
terizations for (SOP). In particular, Corollary 3.2 leads us back to the following asymptotic
Farkas lemma in [5] (see also [8]).

Corollary 3.3 (Asymptotic linear Farkas lemma) Let g 2 L(X;Z); with adjoint oper-
ator denoted by g]; and assume that the cone S is closed. Given x� 2 X�, the following
statements are equivalent:
(l1) g(x) 2 �S =) hx�; xi � 0;
(m1) �x� 2 cl(g](S+)).

Proof. The conclusion follows from Corollary 3.2. Indeed, let us take f(�) := hx�; �i, and
�x = 0X 2 g�1(�S). Then f(�x) = 0 and it follows from Corollary 3.2 that

(l1) () (0X� ; 0) 2 epi(f + iA)�; (3.6)

where A = g�1(�S). It is a standard fact that iA = supz�2S+(z� � g), and hence, by (2.4),
one obtains

epi i�A = cl co

0@ [
z�2S+

epi(z� � g)�
1A :

13

https://www.researchgate.net/publication/276031175_Mathematical_Programming_and_Control_Theory?el=1_x_8&enrichId=rgreq-684e33afbe61f3427ed86ccc8a897c68-XXX&enrichSource=Y292ZXJQYWdlOzMxMjY3MjQwNTtBUzo0NjYzMzAyNjU2MjQ1NzZAMTQ4ODE5MzIwNzQ1MA==
https://www.researchgate.net/publication/272164802_Rejoinder_on_Farkas'_lemma_Three_decades_of_generalizations_for_mathematical_optimization?el=1_x_8&enrichId=rgreq-684e33afbe61f3427ed86ccc8a897c68-XXX&enrichSource=Y292ZXJQYWdlOzMxMjY3MjQwNTtBUzo0NjYzMzAyNjU2MjQ1NzZAMTQ4ODE5MzIwNzQ1MA==
https://www.researchgate.net/publication/267088497_From_the_Farkas_Lemma_to_the_Hahn--Banach_Theorem?el=1_x_8&enrichId=rgreq-684e33afbe61f3427ed86ccc8a897c68-XXX&enrichSource=Y292ZXJQYWdlOzMxMjY3MjQwNTtBUzo0NjYzMzAyNjU2MjQ1NzZAMTQ4ODE5MzIwNzQ1MA==
https://www.researchgate.net/publication/226043013_Sequential_Lagrangian_Conditions_for_Convex_Programs_with_Applications_to_Semidefinite_Programming?el=1_x_8&enrichId=rgreq-684e33afbe61f3427ed86ccc8a897c68-XXX&enrichSource=Y292ZXJQYWdlOzMxMjY3MjQwNTtBUzo0NjYzMzAyNjU2MjQ1NzZAMTQ4ODE5MzIwNzQ1MA==


We now have, by the last equality and the convexity of S+:

epi(f + iA)
� = epi f� + epi i�A (by (2:3))

= fx�g � R+ + cl co

0@ [
z�2S+

epi(z� � g)�
1A

= fx�g � R+ + cl co

0@ [
z�2S+

fz� � gg � R+

1A
= fx�g � R+ + cl

0@ [
z�2S+

fz� � gg � R+

1A
= fx�g � R+ + cl(g](S+))� R+:

Therefore,
(0X� ; 0) 2 epi(f + iA)� () �x� 2 cl(g](S+)):

The conclusion follows from the last equivalence and (3.6). �

Next we are approaching scalar asymptotic Farkas-type results for convex systems. Now,
Y = R; K = R+; f 2 �(X); and C is a nonempty closed convex set in X: Additionally, we
assume that g is S�epi closed and S�convex. Note that, under these assumptions, g�1(�S)
is a closed convex set and iC 2 �(X):
As a consequence of Theorem 3.1 we now can provide an asymptotic Farkas lemma for

convex systems with linear perturbations which extends some results in the literature ([7],
[9]).

Corollary 3.4 (Asymptotic convex Farkas lemma for linear perturbations) Let (f; g; C)
be a scalar triple such that f 2 �(X), C is a closed convex set, and g is S-convex and S-epi
closed. Then, for any pair x� 2 X� and � 2 R the following statements are equivalent:
(n1) g(x) 2 �S; x 2 C =) f(x)� hx�; xi+ � � 0;

(o1) (x�; �) 2 cl
 S
z�2S+

epi(f + iC + z
� � g)�

!
;

(p1) there exists a net (z�i )i2I � S+ such that

f(x) + lim infi(z
�
i � g)(x)� hx�; xi+ � � 0; 8x 2 C:

Proof. We apply Theorem 3.1 with Y = R; K = R+; L = x� and y = �: Then, (n1)
is equivalent to (x�; �) 2 epi (f + iA)�: The equivalence of (n1) and (o1) follows from the
following formula (3.7) in [2, Theorem 8.2]:

epi(f + iA)
� = cl

0@ [
z�2S+

epi(f + iC + z
� � g)�

1A : (3.7)

[(o1) =) (p1)] Assume that (o1) holds. Then, there exist nets (z�i )i2I � S+; (x�i ; ri)i2I �
X� � R such that x�i ! x� and ri ! � and that

(f + iC + z
�
i � g)�(x�i ) � ri; 8i 2 I;
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which leads to

f(x) + (z�i � g)(x)� hx�i ; xi+ ri � 0;8x 2 C and 8i 2 I:

Since x�i ! x� and ri ! �, (p1) follows from the last inequality.

[(p1) =) (n1)] For any x 2 C such that g(x) 2 �S one has (z� � g)(x) � 0 for all z� 2 S+.
Hence, if (p1) holds, one has for such x, f(x)�hx�; xi+� � 0 which means that (n1) holds.
The proof is complete. �

Remark 3.1 Since we also have [4, p. 328]

epi(f + iA)
� = cl

0@epi f� + epi i�C + [
z�2S+

epi (z� � g)�
1A ; (3.8)

it follows that (n1) is also equivalent to

(x�; �) 2 cl

0@epi f� + epi i�C + [
z�2S+

epi(z� � g)�
1A :

The Farkas lemma for linearly perturbed convex systems in Corollary 3.4 extends the
sequential Farkas lemma for convex systems given in [7, Proposition 4] and in [9, Theorem
2.1], where (x�; �) = (0X� ; 0) (in [9], also C = X). When the set in the right hand side of (o1)
is closed, Corollary 3.4 leads to the stable Farkas lemma for convex systems ([6, Theorem
3.1], [13, Corollary 4]). Extensions of this result to nonconvex systems will be established in
the next section. It is worth observing that conditions (3.7) and (3.8) have been used in the
framework of duality theory (see, e.g., [2] and [4]) while some of their generalizations have
been used for extensions of Farkas-type results (see, [10], [13]). Moreover, when taking x� = 0
in Corollary 3.4, the result collapses to an asymptotic Farkas lemma in the next corollary
that extends the sequential Farkas lemma established in [9, Theorem 2.1], where C = X and
the map g was assumed to be continuous (assumption which is much stronger than the S-epi
closedness required below).

Corollary 3.5 (Asymptotic convex Farkas lemma) Let (f; g; C) be a scalar triple and
� 2 R: Assume that f 2 �(X); the convex set C is closed and g is S-convex and S-epi closed.
Then the following statements are equivalent:
(q1) g(x) 2 �S; x 2 C =) f(x) + � � 0;

(r1) (0X� ; �) 2 cl
 S
z�2S+

epi (f + iC + z
� � g)�

!
;

(s1) there exists a net (z�i )i2I � S+ such that

f(x) + lim infi (z
�
i � g)(x) + � � 0; 8x 2 C:

The next stable Farkas lemma for convex systems under linear perturbations [6] is a direct
consequence of the previous results.
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Corollary 3.6 (Stable convex Farkas lemma) [6] Let (f; g; C) be a scalar triple such
that f 2 �(X), the convex cone S is closed, and g is S-convex and S-epi closed. Then,
the following statements are equivalent:
(t1) The set

S
z�2S+

epi (f + iC + z
� � g)� is weak�-closed,

(v1) For any pair (x�; �) 2 X� � R, it holds

fg(x) 2 �S; x 2 C =) f(x)� hx�; xi+ � � 0g
m

f9z� 2 S+;8x 2 C : f(x) + (z� � g)(x)� hx�; xi+ � � 0g :

Proof. The result is a direct consequence of the equivalences in Corollary 3.4. �

4 Farkas-type results for vector-valued functions

In this section we consider the triple (f; g; C) corresponding to problem (VOP) in (3.1), with
A = C \ g�1(�S) such that A \ dom f 6= ;; and we establish a version of Farkas lemma
for vector-valued functions corresponding to the mentioned problem (VOP). We �rstly give
some preliminary lemmas.

Lemma 4.1 It holds [
T2L+(S;K)

epiK(f + iC + T � g)� � epiK(f + iA)�: (4.1)

Proof. Take arbitrarily (L; y) 2
S

T2L+(S;K)
epiK(f + iC + T � g)�. Then there exists

T0 2 L+(S;K) such that y 2 (f + iC + T0 � g)�(L) +K. Hence, there is k0 2 K such that

y � k0 2 (f + iC + T0 � g)�(L) = WSup fL(x)� f(x)� (T0 � g)(x) : x 2 Cg :

By the de�nition of WSup one has

L(x)� f(x)� (T0 � g)(x)� y + k0 =2 intK; 8x 2 C: (4.2)

Observe that if x 2 A, then �(T0 � g)(x) 2 K (as T0 2 L+(S;K)). From this, (4.2) and (2.8)
we get

L(x)� f(x)� y =2 intK; 8x 2 A;

or equivalently,
y + (f + iA)(x)� L(x) =2 � intK; 8x 2 X:

According to Proposition 2.2, we conclude

(L; y) 2 epiK(f + iA)�;

and so the inclusion (4.1) has been proved. �

The next example shows that the inclusion (4.1) can be strict.
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Example 4.1 Let X;Y; Z;K; S;C; f; and g; be as in Example 3.1. Now we shall prove that�
L; (�1;�2)

�
2 epiK(f + iA)��

[
T2L+(S;K)

epiK(f + iC + T � g)�;

for L = (0;�1) ; by showing that

(�1;�2) 2
�
(f + iA)

�(L) + R2+
�
�

[
T2L+(S;K)

�
(f + iC + T � g)�

�
L
�
+ R2+

�
:

On the one hand, since A = C \ g�1(�S) =]0;+1[; we have

(f + iA)
�(L) = WSup

�
L(x)� f(x) : x 2 A

	
= WSup

�
(0;�x)�

�
0;
1

x

�
: x > 0

�
= WSup

��
0;�x� 1

x

�
: x > 0

�
= (R� � f�2g) [ (f0g�]�1;�2]) ;

so that
(�1;�2) 2 (f + iA)�(L) + R2+ = (R� � [�2;+1[) [ (R+ � R) :

On the other hand, recalling that (T � g)(0) = T (+1) = +1R2, we can write, for any
T = (a; b) 2 R2+;

(f + iC + T � g)�(L) = WSup
�
L(x)� f(x)� (T � g)(x) : x 2 C

	
= WSup

�
(0;�x)�

�
0;
1

x

�
+

�
ajx+ 1j
x

;
bjx+ 1j
x

�
: x 2 C�f0g

�
= WSup

��
a

�
x+ 1

x

�
;�x� 1

x
+ b

�
x+ 1

x

��
: x 2]� 1;+1[�f0g

�
:

Table 1 describes
S

T2L+(S;K)

�
(f + iC + T � g)�

�
L
�
+ R2+

�
as a union of sets of the form (f +

iC+(a; b)�g)�
�
L
�
+R2+ for (a; b) 2 Li; where fL1; :::;L8g is the partition of R2+ in the second

column of Table 1. Observe that (3.4) allows to express (f + iC + (a; b) � g)�
�
L
�
+ R2+ as

it appears in row 6, column 3 of Table 1, corresponding to the harder case that (a; b) 2 L6:
Similar calculations provide (f + iC + (a; b) � g)�

�
L
�
+ R2+ for i = 1; :::; 8; i 6= 6:

i Li (f + iC + (a; b) � g)�
�
L
�
+ R2+

1 f(0; 0)g R+ � R
2 f0g � ]0; 1[ R+ � R
3 f(0; 1)g (R� � [2;+1[) [ (R+ � R)
4 f0g � ]1;+1[ R+ � R
5 ]0;+1[� f0g

n
y 2 R2 : y2 � � a

y1�a �
y1�a
a ; y1 =2 ]0; 2a[

o
[ ([0; 2a]� [�2;+1[)

6 ]0;+1[� ]0; 1[

n
y 2 R2 : y2 �

�
b�1
a

�
y1 + 1� a

y1�a ; y1 =2
i
a� a

1�b ; a+
ap
1�b

ho
[
�h
a� a

1�b ; 0
i
� [2;+1[

�
[
�h
0; a+ ap

1�b

i
�
�
b� 2

p
1� b;+1

��
7 ]0;+1[� f1g (R� � [2;+1[) [ (R+ � [1;+1[)
8 ]0;+1[� ]1;+1[ f+1R2g

Table 1

The conclusion follows from the fact that no set in column 3 of Table 1 contains (�1;�2):
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We shall need the following technical lemmas:

Lemma 4.2 Let (L; y) 2 L(X;Y )� Y and T 2 L(Z; Y ). The following implication holds:

y + (f + iC + T � g)(x) �K L(x) 8x 2 X =) (L; y) 2 epiK(f + iC + T � g)�;

or equivalently,

y + (f + iC + T � g)(x)� L(x) =2 �intK 8x 2 X =) y 2 (f + iC + T � g)�(L) +K;

Proof. It comes from Proposition 2.2 by taking h := f + iC + T � g and observing that
dom(T � g) = g�1(Z); so that

dom(f + iC + T � g) = (dom f) \ C \ g�1(Z) � (dom f) \A 6= ;:

�

Lemma 4.3 Let (L; y) 2 L(X;Y )� Y , and consider the following statements:
(a1) g(x) 2 �S; x 2 C =) f(x)� L(x) + y =2 �intK,
(a2) 9 T 2 L+(S;K) such that

(L; y) 2 epiK(f + iC + T � g)�:

(b2) 9 T 2 L+(S;K) such that

f(x) + (T � g)(x)� L(x) + y =2 �intK; 8x 2 C:

We have the following relationships among them:

(a1) (= (a2) () (b2):

Proof. [(a1) (= (a2)] It follows from Lemma 4.1 and Theorem 3.1

(a2) () (L; y) 2
[

T2L+(S;K)
epiK(f + iC + T � g)�

=) (L; y) 2 epiK(f + iA)� () (a1): (4.3)

[(a2) =) (b2)] Assume that (a2) holds; in other words, there exist T 2 L+(S;K) and
k 2 K such that

y � k 2 (f + iC + T � g)�(L):

Therefore
y � k � L(x) + f(x) + iC(x) + (T � g)(x) 62 � intK; 8x 2 X:

Now, again by (2.8), we get

y � L(x) + f(x) + iC(x) + (T � g)(x) 62 � intK; 8x 2 X; (4.4)

which is nothing else but (b2).

[(b2) =) (a2)] This implication follows from Lemma 4.2. �

Next we present the main result in this section.
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Theorem 4.1 (Stable Reverse Farkas lemma)(
epiK(f + iA)

� =
S

T2L+(S;K)
epiK(f + iC + T � g)�

)
m

f8(L; y) 2 L(X;Y )� Y; (a1)() (a2)() (b2)g :

Proof. (+) Now the implication in (4.3) is an equivalence.
(*) The implication (a1)=)(a2) yields

epiK(f + iA)
� �

[
T2L+(S;K)

epiK(f + iC + T � g)�;

and the proof �nishes by applying (4.1). �

Remark 4.1 The equivalence (a1)() (a2) in Theorem 4.1 is called stable as it holds for
all (L; y) 2 L(X;Y )� Y:

Remark 4.2 When we are con�ned to the convex (SOP) (i.e. f 2 �(X); C is a closed
convex set, and g is S-convex and S-epi closed), the equality

epiK(f + iA)
� =

[
T2L+(S;K)

epiK(f + iC + T � g)� (4.5)

is equivalent to the weak�-closedness of
S

z�2S+
epi(f+ iC+z

� �g)�. This condition is necessary

and su¢ cient for the stable Farkas lemma and stable Lagrange duality for (SOP) in [6] (see
also [13]). The following example illustrates the ful�lment of (4.5).

Example 4.2 Let X = R; Y = R2; Z = R; K = R2+; S = R+; C =]0; 1[, f(x) = (x; x), and
g(x) = �x. We add to Y = R2 a greatest and smallest elements with respect to the ordering
de�ned by K = R2+, denoted by �1R2 and +1R2, i.e., Y

� = R2 [ f�1R2g [ f+1R2g.
Observe �rst that A = C \ g�1(�S) =]0; 1[: Let L 2 L(X;Y ) = L(R;R2) be de�ned by
L(x) = (�x; �x) for all x 2 X = R (�; � 2 R). Then one has,

(f + iA)
�(L) = WSup

�
((�� 1)x; (� � 1)x) 2 R2 : x 2 A =]0; 1[

	
:

On the other hand, for any T 2 L+(S;K) = L+(R+;R2+) (it is easy to see that T (z) = (az; bz)
for all z 2 Z = R with a � 0 and b � 0), one has

(f + iC + T � g)�(L) = WSup f((�+ a� 1)x; (� + b� 1)x) : x 2]0; 1[g :

Routine calculations show that condition (4.5) holds.

Theorem 4.2 (Partially-stable Reverse Farkas lemma) The following statements are
equivalent:

(c2) epiK(f + iA)
� \ (f0Lg � Y ) =

 S
T2L+(S;K)

epiK(f + iC + T � g)�
!
\ (f0Lg � Y ).

(d2) For any y 2 Y;

fg(x) 2 �S; x 2 C =) f(x) + y =2 �intKg
m

f9 T 2 L+(S;K) such that y + f(x) + (T � g)(x) =2 �intK 8x 2 Cg :
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Proof. It is similar to the proofs of Lemma 4.3 and Theorem 4.1, but taking L = 0L: �

Remark 4.3 Again for the convex (SOP) (i.e. f 2 �(X); C is a closed convex set, and g is
S-convex and S-epi closed), condition (c2) accounts for the closedness of

S
z�2S+

epi(f + iC +

z� �g)� regarding the set f0X�g�R (recall that a set A is said to be closed regarding to the
set B if B \ clA = B \A; see e.g. [2, p. 56]), and this condition is su¢ cient for generalized
Farkas lemma for systems involving extended real-valued functions (see, e.g., [6], [13], and
[10]).

The following example illustrates the ful�lment of (c2).

Example 4.3 Let X = R; Y = R2; Z = R; K = R2+; S = R+; C =]� 1; 1[, f(x) = (x; x2),
and g(x) = �x. We add to Y = R2 a greatest and smallest elements with respect to the
ordering de�ned by K = R2+, denoted by �1R2 and +1R2, i.e., Y

� = R2[f�1R2g[f+1R2g.
Observe �rstly that A = C \ g�1(�S) = [0; 1[ and

(f + iA)
�(0L) = WSup

�
(�x;�x2) : x 2 A = [0; 1[

	
= (]�1; 0]� f0g) [ (f0g � ]�1; 0]) :

Therefore,
(f + iA)

�(0L) + R2+ = R2�(�R2++):

So,
epiK(f + iA)

� \ (f0Lg � Y ) = f0Lg �
�
R2�(�R2++)

�
: (4.6)

On the other hand, given T = (a; b) 2 L+(R+;R2+) = R2+; one has

(f + iC + T � g)�(0L) = WSup
��
(a� 1)x; bx� x2

�
: x 2]� 1; 1[

	
:

New routine calculations, together with (4.6), show that (c2) holds.

For problem (SOP), Theorems 4.1 and 4.2 yield respectively the following versions of well-
known Farkas-type results where we succeeded to eliminate super�uous convexity and lower
semicontinuity assumptions. In particular, in [14] the authors require convexity of the in-
volved sets and functions but, in page 1313, they claim that "most results remain valid even
if one drops the convexity assumptions". Of course, for problem (SOP) in (3.2), we also
assume that A \ dom f 6= ;.

Corollary 4.1 [14, Theorem 6.7] For problem (SOP) in (3.2) the following statements are
equivalent:
(e2) epi(f + iA)

� =
S

z�2S+
epi(f + iC + z

� � g)�:

(f2) For any x� 2 X� and any � 2 R;

fg(x) 2 �S; x 2 C =) f(x)� hx�; xi+ � � 0g
m

f9 z� 2 S+ such that f(x) + (z� � g)(x)� hx�; xi+ � � 0; 8x 2 Cg :
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Corollary 4.2 [14, Theorem 6.6] For problem (SOP) in (3.2) the following statements are
equivalent:

(g2) epi(f + iA)
� \ (f0X�g � R) =

 S
z�2S+

epi(f + iC + z
� � g)�

!
\ (f0X�g � R) :

(h2) For any � 2 R;

fg(x) 2 �S; x 2 C =) f(x) + � � 0g
m

f9 z� 2 S+ such that f(x) + (z� � g)(x) + � � 0; 8x 2 Cg :

Condition (e2) is called in [14] weak conical epigraph hull property relative to f , whereas
(f2) is called stable Farkas rule with respect to f: The mentioned paper does not assume the
lower semicontinuity of the involved functions. In [14] the following condition, similar to (e2),
and called conical epigraph hull property relative to f , is also exploited:

(e�2) epi(f + iA)
� = epi f� + epi i�C +

S
z�2S+

epi(z� � g)�:

The conditions in Corollaries 4.1 and 4.2 are the weakest ones (necessary and su¢ cient
conditions) for such Farkas-type results. They are conditions (e2) and (g2), which correspond
to the scalar versions of (4.5) and (c2), respectively, but without convexity (see Remark 4.2).

5 Applications to vector optimization

This section focuses on the vector optimization problem (VOP) in (3.1):

(VOP) WMin ff(x) : x 2 C; g(x) 2 �Sg ;

assuming once again A \ dom f 6= ;; where A = C \ g�1(�S) is the feasible set. Recall that
an element �x 2 A is said to be a weak solution to (VOP) if

f(�x) 2WMin f(A):

By Proposition 2.1(ii),

�x is a weak solution of (VOP) () f(x)� f(�x) 62 � intK; 8x 2 A
() fg(x) 2 �S; x 2 C=)f(x)� f(�x) 62 � intKg :(5.1)

The next result is a straightforward consequence of Theorem 3.2.

Proposition 5.1 Let �x 2 A \ dom f: The following statements are equivalent:
(a3) �x is a weak solution to (VOP),
(b3) 0L 2 @(f + iA)(�x),
(c3) (0L;�f(�x)) 2 epiK(f + iA)�.

Example 5.1 ([21, Example 8.6]) Consider the multiobjective optimization problem (MOP)
in (3.3), with C = X = Y = R2, Z = R; K = R2+; S = R+; f(x1; x2) = (x1; x2); and
g(x1; x2) = maxf�x1; 0g � x2. We add to Y = R2 a greatest and smallest elements with
respect to the ordering de�ned by K = R2+, denoted by �1R2 and +1R2, i.e., Y

� = R2 [
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f�1R2g[f+1R2g. Obviously, the elements of L(X;Y ) can be identi�ed with 2� 2 matrices
and 0L with the null matrix. It is clear that A = fx 2 R2 : x2 � 0; x1 + x2 � 0g; and hence

(f + iA)
�(0L) = WSup

�
�(f + iA)(x) : x 2 R2

	
= WSup f�Ag

=
�
]�1; 0]� f0g

�
[ fx 2 R2 : x1 � 0; x1 + x2 = 0g:

So, given �x 2 A; (0L;�f(�x)) 2 epiK(f + iA)� if and only if

�f(�x) = ��x 2 (f + iA)� (0L) + R2+ = fx 2 R2 : x2 � 0 or x1 + x2 � 0g

if and only if �x is a boundary point of A: Thus, by Proposition 5.1, we see in this example
that the set of weak solutions to (MOP) is nothing else than the boundary of A: Observe that
these boundary points satisfy

0L(�x)� f(�x) = ��x 2WSup
�
0L (x)� (f + iA)(x) : x 2 R2

	
;

or equivalently,
0L 2 @(f + iA)(�x):

Next we establish our main result for (VOP):

Theorem 5.1 Consider the problem (VOP) in (3.1), and let �x 2 A \ dom f: Then the
following statements are equivalent:

(d3) epiK(f + iA)
� \ f(0L;�f(�x))g =

 S
T2L+(S;K)

epiK(f + iC + T � g)�
!
\ f(0L;�f(�x))g.

(e3) �x is a weak solution of (VOP) if and only if there exists T 2 L+(S;K) such that

�f(�x) 2 (f + iC + T � g)�(0L) +K:

(f3) �x is a weak solution of (VOP) if and only if there exists T 2 L+(S;K) such that

f(x) + (T � g)(x)� f(�x) =2 �intK; 8x 2 C:

Moreover, if one of the three statements holds then the linear operator T 2 L+(S;K) whose
existence is stated in (e3) and (f3) can be chosen such that �(T � g)(�x) 2 K n intK.

Proof. [(d3) () (e3)] It follows from Proposition 5.1 that

�x is a weak solution of (VOP) () (0L;�f(�x)) 2 epiK(f + iA)�: (5.2)

On the other hand, it is clear that

(0L;�f(�x)) 2
S

T2L+(S;K)
epiK(f + iC + T � g)�

m
9 T 2 L+(S;K) : �f(�x) 2 (f + iC + T � g)�(0L) +K;

(5.3)

and hence, the equivalence of (d3) and (e3) follows from (5.2) and (5.3).

[(e3) =) (f3)] Assume that (e3) holds and �x is a weak solution of (VOP). Then there
exists T 2 L+(S;K) such that �f(�x) 2 (f + iC + T � g)�(0L) +K: Then, there exists k 2 K
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such that �f(�x)� k 2 (f + iC + T � g)�(0L): By the de�nition of the conjugate function, one
has

(f + iC + T � g)(x)� f(�x)� k =2 �intK; 8x 2 X;
so that

(f + iC + T � g)(x)� f(�x) =2 �intK; 8x 2 X;
or equivalently,

f(x) + (T � g)(x)� f(�x) =2 �intK; 8x 2 C: (5.4)

Conversely, let us take T 2 L+(S;K) such that (5.4) holds. Now if x 2 C and g(x) 2 �S then
�(T � g)(x) 2 K (as T 2 L+(S;K)) and it follows from (2.8) and (5.4) that f(x) � f(�x) =2
� intK, which shows that �x is a weak solution of (VOP).
[(f3) =) (e3)] It follows from Lemma 4.2 with L = 0L and y = �f(�x).
Lastly, by substituting x = �x into (5.4) we get �(T � g)(�x) 62 intK. On the other hand,

g(�x) 2 �S, T 2 L+(S;K) yields �(T � g)(�x) 2 K, and so, �(T � g)(�x) 2 K n intK. The
proof is complete. �

Remark 5.1 If we consider the (SOP) problem in (3.2) with the assumptions that f 2 �(X);
the convex set C is closed, g is S-convex and S-epi closed, Proposition 5.1 o¤ers an asymptotic
optimality condition for (SOP): �x is an optimal solution of (SOP) if and only if

(0X� ;�f(�x)) 2 epi(f + iA)� = cl

0@ [
z�2S+

epi(f + iC + z
� � g)�

1A
(the last equality follows from [2, Theorem 8.2], see also (3.7)). So in this case, the weak�-
closedness of the set

S
z�2S+ epi(f + iC + z

� � g)� implies that (d3) holds at �x: Moreover, in
this speci�c case, one get a non-asymptotic optimality condition for (SOP): �x is an optimal
solution of (SOP) if and only if there is z� 2 S+ such that (0X� ;�f(�x)) 2 epi(f+iC+z��g)�.
This simple example illustrates the use and signi�cance of condition (d3).

In the case g � 0Z and C = X, the problem (VOP) becomes the unconstrained vector
optimization problem

(UVOP) WMin
�
f(x) : x 2 X

	
: (5.5)

Corollary 5.1 Let �x 2 dom f . Then �x is a weak solution of the problem (UVOP), if and
only if 0L 2 @f(�x).

Proof. The conclusion follows from Proposition 5.1 with g � 0Z and C = X. �

If we take Y = R and K = R+; then the problem (UVOP) collapses to the unconstrained
scalar optimization problem

(USOP) Min ff(x) : x 2 Xg :

Then, according to Corollary 5.1, �x 2 X is an optimal solution to (USOP) if and only if
0X� 2 @f(�x).
We now turn back to the (SOP) problem in (3.2). The optimality conditions above lead us

to the corresponding ones for (SOP), which are new and interesting in the sense that they are
obtained in absence of assumptions on convexity, lower semicontinuity of functions/mappings
and closedness of the constraint set.
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Corollary 5.2 Let �x 2 A \ dom f: The following statements are equivalent:

(g3) (epi(f + iA)
�) \ f(0X� ;�f(�x))g =

 S
z�2S+

epi (f + iC + z
� � g)�

!
\ f(0X� ;�f(�x))g:

(h3) �x is an optimal solution to (SOP) if and only if there exists z� 2 S+ such that

0X� 2 @(f + iC + z� � g)(�x) and (z� � g)(�x) = 0:

(i3) �x is an optimal solution to (SOP) if and only if there exists z� 2 S+ such that

f(x) + (z� � g)(x)� f(�x) � 0; 8x 2 C:

Proof. The conclusion follows from Theorem 5.1, taking into account the equivalence
between (h3) and (e3) (see, e.g. Proposition 2.4.2(iii) in [26]) since (z� � g)(�x) = 0 as
K n intK = R+ n (intR+) = f0g. �

6 Other applications

In this last section we apply the Farkas-type results for vector-valued functions established
in Section 4 to vector variational inequalities and vector equilibrium problems. We are under
the same assumptions of the previous sections, i.e., X;Y are lcHtvs, C is a nonempty subset
in X; and K is a pointed convex cone in Y such that intK 6= ;:

6.1 Vector variational inequalities

Now we consider the so-called extended vector variational inequality problem

(EVVI) Find x 2 C such that F (x)(z � x) �K H(x)�H(z) for all z 2 C;

where F : X ! L(X;Y ) and H : X ! Y:

If H = 0; we obtain the vector variational inequality problem

(VVI) Find x 2 C such that F (x)(z � x) �K 0Y for all z 2 C:

Remark 6.1 (a) (EVVI) was introduced in [3, p.356] with the e¢ cient ordering in Y gen-
erated by K (y1 �K y2 () y2 � y1 2 K�f0Y g) in a more general form (with H being a
set-valued mapping).
(b) When Y = R and K = R+; then the problem (EVVI) becomes the general variational
inequality problem

Find x 2 C such that F (x)(z � x) � H(x)�H(z) for all z 2 C:

Such a model covers the special case when F is a continuous linear operator from X to X�,
and H is a proper, lsc and convex function considered in [11], [17]. In this case, the problem
(VVI) collapses to the ordinary variational inequality problem

Find x 2 C such that F (x)(z � x) � 0 for all z 2 C:
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For a �xed �x 2 C, we consider the vector optimization problem

(VOP(F;H; �x)) WMin fF (�x)(z � �x) +H(z)�H(�x) : z 2 Cg :

It is worth observing that �x 2 C is a solution of the problem (EVVI) if only if �x is a weak
solution to the vector optimization problem (VOP(F;H; �x)).

Theorem 6.1 Let �x 2 C. Then the following statements are equivalent:
(a4) �x is a solution of (EVVI),
(b4) �F (�x) 2 @(H + iC)(�x),
(c4) � (F (�x);H(�x) + F (�x)(�x)) 2 epiK(H + iC)

�:

Proof. Let fx : X ! Y be the vector-valued function de�ned by

fx(�) := F (�x)(� � �x) +H(�)�H(�x): (6.1)

It is obvious that
(a4) () fx(�x) = 0Y 2WMin fx(C):

[(a4)()(c4)] In order to apply Proposition 5.1 we need to make some previous calculations.
By the de�nition of conjugate function, we get

(fx + iC)
�(L) = WSup fL(z)� fx(z)� iC(z) : z 2 Xg

= WSup f(L� F (�x))(z)� (H + iC)(z) : z 2 Xg+H(�x) + F (�x)(�x)
= (H + iC)

� (L� F (�x)) +H(�x) + F (�x)(�x):

(The second equality above holds by [25, Proposition 3.2(i)]). Hence,

epiK(fx + iC)
� = epiK(H + iC)

� + (F (�x);H(�x) + F (�x)(�x)) : (6.2)

Proposition 5.1 yields the equivalence between (a4) and the condition (0L; 0Y ) 2 epi(f�x+iC)�;
but from (6.2)

(0L; 0Y ) 2 epi(f�x + iC)� () � (F (�x);H(�x) + F (�x)(�x)) 2 epiK(H + iC)
�; (6.3)

which is (c4):

[(a4)()(b4)] It also follows from Proposition 5.1, which establishes

(a4) () 0L 2 @(f�x + iC)(�x);

or, equivalently,

0Y = 0L(�x)� (f�x + iC)(�x) 2 (f�x + iC)� (0L) (6.4)

= (H + iC)
� (�F (�x)) +H(�x) + F (�x)(�x): (6.5)

This is also equivalent to

�F (�x)(�x)�H(�x)� iC(�x) 2 (H + iC)
� (�F (�x)) ;

which accounts for (see Proposition 2.3)

�F (�x) 2 @ (H + iC) (�x);

and the equivalence is proved. The proof is complete. �
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Example 6.1 Consider the following problem (VVI) with X = Y = R2; K = R2+ :

Find x 2 C such that
�
x1 x1
x2 0

��
z1 � x1
z2 � x2

�
�R2+

�
0
0

�
; 8z 2 C;

where C = fz 2 R2 : z1 + z2 � 2g, and again Y � = R2 [ f�1R2g [ f+1R2g. Now we show
that �x = (1; 0) is a solution of (VVI). Indeed,

i�C(�F (�x)) = WSup
�
�F (�x)(z)� iC(z) : z 2 R2

	
= WSup

�
�
�
1 1
0 0

��
z1
z2

�
: z1 + z2 � 2

�
= WSup

��
�z1 � z2

0

�
: z1 + z2 � 2

�
= WSup f[�2;+1[�f0gg
= R� f0g:

It is easy to see that �F (�x)(�x)�iC(�x) = (�1; 0) 2 i�C(�F (�x)); which is equivalent to �F (�x) 2
@iC(�x): By Theorem 6.1, �x = (1; 0) is a solution of (VVI) (here H = 0).

6.2 Vector equilibrium problem

Let F : X �X ! Y � be a bifunction satisfying F (x; x) = 0Y for all x 2 C: We consider the
vector equilibrium problem

(VEP) Find x 2 C such that F (x; z) �K 0Y for all z 2 C:

Remark 6.2 (a) (VEP) was introduced in [3, p.380] for a set-valued map F : X � X �
Y [ f+1Y g.
(b) When Y = R and K = R+; (VEP) collapses to the equilibrium problem

Find x 2 C such that F (x; z) � 0 for all z 2 C:

For a �xed �x 2 C, we consider the vector optimization problem associated with (VEP):

(VOEP(F; �x)) WMin fF (�x; z) : z 2 Cg :

Observe that �x 2 C is a solution of (VEP) if and only if �x is a weak solution of (VOEP(F; �x)):
The following result is a straightforward consequence of Proposition 5.1.

Theorem 6.2 Let �x 2 C. Then the following statements are equivalent:
(a5) �x is a solution of (VEP),
(b5) 0L 2 @(F (�x; �) + iC) (�x),
(c5) (0L; 0Y ) 2 epiK(F (�x; �) + iC)�:

Example 6.2 Consider the following (VEP) problem, with X = Y = R2; K = R2+ :

(VEP1) : Find x 2 C such that F (x; z) =
�
x21 � x1z1
x2 � z2

�
�R2+

�
0
0

�
; 8z 2 C;
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where C = [�1; 1] � [�1; 1] : Obviously, F (x; x) =
�
0
0

�
for all x 2 R2: We shall show that

�x = (1; 0) is a solution of (VEP). Indeed, observe that

(F (�x; �) + iC)� (0L) = WSup
n
� F (�x; z)� iC(z) : z 2 R2

o
= WSup

��
z1 � 1
z2

�
: z 2 [�1; 1]� [�1; 1]

�
= WSup

�
[�2; 0]� [�1; 1]

	
=

�
]�1; 0]� f1g

�
[
�
f0g�]�1; 1]

�
:

It is easy to see that 0L(�x)�
�
F (�x; �x)+iC(�x)

�
= (0; 0) 2

�
F (�x; �)+iC

��
(0L); which is equivalent

to 0L 2 @
�
F (�x; �) + iC

�
(�x): It follows from Theorem 6.2 that �x = (1; 0) is a solution of the

problem (VEP1).
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