10,363 research outputs found
Observing the sky at extremely high energies with the Cherenkov Telescope Array: Status of the GCT project
The Cherenkov Telescope Array is the main global project of ground-based
gamma-ray astronomy for the coming decades. Performance will be significantly
improved relative to present instruments, allowing a new insight into the
high-energy Universe [1]. The nominal CTA southern array will include a
sub-array of seventy 4 m telescopes spread over a few square kilometers to
study the sky at extremely high energies, with the opening of a new window in
the multi-TeV energy range. The Gamma-ray Cherenkov Telescope (GCT) is one of
the proposed telescope designs for that sub-array. The GCT prototype recorded
its first Cherenkov light on sky in 2015. After an assessment phase in 2016,
new observations have been performed successfully in 2017. The GCT
collaboration plans to install its first telescopes and cameras on the CTA site
in Chile in 2018-2019 and to contribute a number of telescopes to the
subsequent CTA production phase.Comment: 8 pages, 7 figures, ICRC201
Separate ways: The Mass-Metallicity Relation does not strongly correlate with Star Formation Rate in SDSS-IV MaNGA galaxies
We present the integrated stellar mass-metallicity relation (MZR) for more
than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey.
The spatially resolved data allow us to determine the metallicity at the same
physical scale (effective radius in arcsecs, ) using a
heterogeneous set of ten abundance calibrators. Besides scale factors, the
shape of the MZR is similar for all calibrators, consistent with those reported
previously using single-fiber and integral field spectroscopy. We compare the
residuals of this relation against the star formation rate (SFR) and specific
SFR (sSFR). We do not find a strong secondary relation of the MZR with either
SFR or the sSFR for any of the calibrators, in contrast with previous
single-fiber spectroscopic studies. Our results agree with an scenario in which
metal enrichment happens at local scales, with global outflows playing a
secondary role in shaping the chemistry of galaxies and cold-gas inflows
regulating the stellar formation.Comment: 10 pages, 9 Figures. Accepted for publication in Ap
Kolmogorov-Smirnov method for the determination of signal time-shifts
A new method for the determination of electric signal time-shifts is
introduced. As the Kolmogorov-Smirnov test, it is based on the comparison of
the cumulative distribution functions of the reference signal with the test
signal. This method is very fast and thus well suited for on-line applications.
It is robust to noise and its performances in terms of precision are excellent
for time-shifts ranging from a fraction to several sample durations.
PACS. 29.40.Gx (Tracking and position-sensitive detectors), 29.30.Kv (X- and
-ray spectroscopy), 07.50.Qx (Signal processing electronics)Comment: 8 pages, 7 figure
Local deformations and incommensurability of high quality epitaxial graphene on a weakly interacting transition metal
We investigate the fine structure of graphene on iridium, which is a model
for graphene weakly interacting with a transition metal substrate. Even the
highest quality epitaxial graphene displays tiny imperfections, i.e. small
biaxial strains, ca. 0.3%, rotations, ca. 0.5^{\circ}, and shears over
distances of ca. 100 nm, and is found incommensurate, as revealed by X-ray
diffraction and scanning tunneling microscopy. These structural variations are
mostly induced by the increase of the lattice parameter mismatch when cooling
down the sample from the graphene preparation temperature to the measurement
temperature. Although graphene weakly interacts with iridium, its thermal
expansion is found positive, contrary to free-standing graphene. The structure
of graphene and its variations are very sensitive to the preparation
conditions. All these effects are consistent with initial growth and subsequent
pining of graphene at steps
Evidence That Obesity Risk Factor Potencies Are Weight Dependent, a Phenomenon That May Explain Accelerated Weight Gain in Western Societies
We have shown that individuals at the highest percentiles of the body mass index (BMI) distribution (i.e., most overweight) experience greater increases in body weight from sedentary lifestyle than those from the lowest percentiles. The purpose of the current analyses was to assess whether recent, accelerated increases in obesity could potentially be due to increased vulnerability to obesity risk factors as the population has become more overweight.Quantile regression was used to compare BMI population percentiles to obesity risk factors (lower education, diets characterized by high-meat/low-fruit content, parental adiposity) in two independent samples of men (N(1) = 3,513, N(2) = 11,365) and women (N(1) = 15,809, N(2) = 10,159). The samples were subsets of the National Walkers' (Study 1) and Runners' (Study 2) Health Studies whose physical activities fell short of nationally recommended activity levels. The data were adjusted for age, race, and any residual effects of physical activity. The regression slopes for BMI vs. education, diet, and family history became progressively stronger from the lowest (e.g., 5(th), 6(th)…) to the highest (e.g., …, 94(th), 95(th)) BMI percentiles. Compared to the 10(th) BMI percentile, their effects on the 90(th) BMI percentile were: 1) 2.7- to 8.6-fold greater in women and 2.0- to 2.4-fold greater in men for education; 2) 3.6- to 4.8-fold greater in women and 1.7- to 2.7-fold greater in men for diet; and 3) 2.0- to 2.6-fold greater in women and 1.7-fold greater in men for family history.Thus we propose risk factors that produce little weight gain in lean individuals may become more potent with increasing adiposity. This leads us to hypothesize that an individual's obesity is itself a major component of their obesogenic environment, and that, the cycle of weight gain and increased sensitivity to obesity risk factors may partly explain recent increases in obesity in western societies
Fast analytical methods for the correction of signal random time-shifts and application to segmented HPGe detectors
Detection systems rely more and more on on-line or off-line comparison of
detected signals with basis signals in order to determine the characteristics
of the impinging particles. Unfortunately, these comparisons are very sensitive
to the random time shifts that may alter the signal delivered by the detectors.
We present two fast algebraic methods to determine the value of the time shift
and to enhance the reliability of the comparison to the basis signals.Comment: 13 pages, 8 figure
- …