431 research outputs found

    Why Our Next President May Keep His or her Senate Seat: A Conjecture on the Constitution’s Incompatibility Clause

    Get PDF
    Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention

    Numerical Study of a Field Theory for Directed Percolation

    Full text link
    A numerical method is devised for study of stochastic partial differential equations describing directed percolation, the contact process, and other models with a continuous transition to an absorbing state. Owing to the heightened sensitivity to fluctuationsattending multiplicative noise in the vicinity of an absorbing state, a useful method requires discretization of the field variable as well as of space and time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields critical exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00

    Theory of Branching and Annihilating Random Walks

    Full text link
    A systematic theory for the diffusion--limited reaction processes A+A0A + A \to 0 and A(m+1)AA \to (m+1) A is developed. Fluctuations are taken into account via the field--theoretic dynamical renormalization group. For mm even the mean field rate equation, which predicts only an active phase, remains qualitatively correct near dc=2d_c = 2 dimensions; but below dc4/3d_c' \approx 4/3 a nontrivial transition to an inactive phase governed by power law behavior appears. For mm odd there is a dynamic phase transition for any d2d \leq 2 which is described by the directed percolation universality class.Comment: 4 pages, revtex, no figures; final version with slight changes, now accepted for publication in Phys. Rev. Let

    Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model

    Full text link
    We study a three species monomer-monomer catalytic surface reaction model with a reactive steady state bordered by three equivalent unreactive phases where the surface is saturated with one species. The transition from the reactive to a saturated phase shows directed percolation critical behavior. Each pair of these reactive-saturated phase boundaries join at a bicritical point where the universal behavior is in the even branching annihilating random walk class. We find the crossover exponent from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses multicol.sty. Accepted for publication in PR

    The homeostatic chemokine CCL21 predicts mortality in aortic stenosis patients and modulates left ventricular remodeling

    Get PDF
    BACKGROUND: CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload. METHODS AND RESULTS: Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7-/- mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness. CONCLUSIONS: Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS

    Criticality of natural absorbing states

    Full text link
    We study a recently introduced ladder model which undergoes a transition between an active and an infinitely degenerate absorbing phase. In some cases the critical behaviour of the model is the same as that of the branching annihilating random walk with N2N\geq 2 species both with and without hard-core interaction. We show that certain static characteristics of the so-called natural absorbing states develop power law singularities which signal the approach of the critical point. These results are also explained using random walk arguments. In addition to that we show that when dynamics of our model is considered as a minimum finding procedure, it has the best efficiency very close to the critical point.Comment: 6 page

    Interacting Monomer-Dimer Model with Infinitely Many Absorbing States

    Full text link
    We study a modified version of the interacting monomer-dimer (IMD) model that has infinitely many absorbing (IMA) states. Unlike all other previously studied models with IMA states, the absorbing states can be divided into two equivalent groups which are dynamically separated infinitely far apart. Monte Carlo simulations show that this model belongs to the directed Ising universality class like the ordinary IMD model with two equivalent absorbing states. This model is the first model with IMA states which does not belong to the directed percolation (DP) universality class. The DP universality class can be restored in two ways, i.e., by connecting the two equivalent groups dynamically or by introducing a symmetry-breaking field between the two groups.Comment: 5 pages, 5 figure

    Osteoprotegerin Is Associated With Major Bleeding But Not With Cardiovascular Outcomes in Patients With Acute Coronary Syndromes: Insights From the PLATO (Platelet Inhibition and Patient Outcomes) Trial

    Get PDF
    BACKGROUND: Elevated levels of osteoprotegerin, a secreted tumor necrosis factor-related molecule, might be associated with adverse outcomes in patients with coronary artery disease. We measured plasma osteoprotegerin concentrations on hospital admission, at discharge, and at 1 and 6 months after discharge in a predefined subset (n=5135) of patients with acute coronary syndromes in the PLATO (Platelet Inhibition and Patient Outcomes) trial. METHODS AND RESULTS: The associations between osteoprotegerin and the composite end point of cardiovascular death, nonprocedural spontaneous myocardial infarction or stroke, and non-coronary artery bypass grafting major bleeding during 1 year of follow-up were assessed by Cox proportional hazards models. Event rates of the composite end point per increasing quartile groups at baseline were 5.2%, 7.5%, 9.2%, and 11.9%. A 50% increase in osteoprotegerin level was associated with a hazard ratio (HR) of 1.31 (95% confidence interval [CI], 1.21-1.42) for the composite end point but was not significant in adjusted analysis (ie, clinical characteristics and levels of C-reactive protein, troponin T, NT-proBNP [N-terminal pro-B-type natriuretic peptide], and growth differentiation factor-15). The corresponding rates of non-coronary artery bypass grafting major bleeding were 2.4%, 2.2%, 3.8%, and 7.2%, with an unadjusted HR of 1.52 (95% CI, 1.36-1.69), and a fully adjusted HR of 1.26 (95% CI, 1.09-1.46). The multivariable association between the osteoprotegerin concentrations and the primary end point after 1 month resulted in an HR of 1.09 (95% CI, 0.89-1.33); for major bleeding after 1 month, the HR was 1.33 (95% CI, 0.91-1.96). CONCLUSIONS: In patients with acute coronary syndrome treated with dual antiplatelet therapy, osteoprotegerin was an independent marker of major bleeding but not of ischemic cardiovascular events. Thus, high osteoprotegerin levels may be useful in increasing awareness of increased bleeding risk in patients with acute coronary syndrome receiving antithrombotic therapy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00391872

    One-dimensional Nonequilibrium Kinetic Ising Models with local spin-symmetry breaking: N-component branching annihilation transition at zero branching rate

    Full text link
    The effects of locally broken spin symmetry are investigated in one dimensional nonequilibrium kinetic Ising systems via computer simulations and cluster mean field calculations. Besides a line of directed percolation transitions, a line of transitions belonging to N-component, two-offspring branching annihilating random-walk class (N-BARW2) is revealed in the phase diagram at zero branching rate. In this way a spin model for N-BARW2 transitions is proposed for the first time.Comment: 6 pages, 5 figures included, 2 new tables added, to appear in PR

    Critical phenomena of nonequilibrium dynamical systems with two absorbing states

    Full text link
    We study nonequilibrium dynamical models with two absorbing states: interacting monomer-dimer models, probabilistic cellular automata models, nonequilibrium kinetic Ising models. These models exhibit a continuous phase transition from an active phase into an absorbing phase which belongs to the universality class of the models with the parity conservation. However, when we break the symmetry between the absorbing states by introducing a symmetry-breaking field, Monte Carlo simulations show that the system goes back to the conventional directed percolation universality class. In terms of domain wall language, the parity conservation is not affected by the presence of the symmetry-breaking field. So the symmetry between the absorbing states rather than the conservation laws plays an essential role in determining the universality class. We also perform Monte Carlo simulations for the various interface dynamics between different absorbing states, which yield new universal dynamic exponents. With the symmetry-breaking field, the interface moves, in average, with a constant velocity in the direction of the unpreferred absorbing state and the dynamic scaling exponents apparently assume trivial values. However, we find that the hyperscaling relation for the directed percolation universality class is restored if one focuses on the dynamics of the interface on the side of the preferred absorbing state only.Comment: 11 pages, 21 figures, Revtex, submitted to Phy. Rev.
    corecore