93 research outputs found

    MATH 631-001: Linear Algebra

    Get PDF

    Examination of actin and microtubule dependent APC localisations in living mammalian cells

    Get PDF
    Abstract (provisional) Background The trafficking of the adenomatous polyposis coli (APC) tumour suppressor protein in mammalian cells is a perennially controversial topic. Immunostaining evidence for an actin-associated APC localisation at intercellular junctions has been previously presented, though live imaging of mammalian junctional APC has not been documented. Results Using live imaging of transfected COS-7 cells we observed intercellular junction-associated pools of GFP-APC in addition to previously documented microtubule-associated GFP-APC and a variety of minor localisations. Although both microtubule and junction-associated populations could co-exist within individual cells, they differed in their subcellular location, dynamic behaviour and sensitivity to cytoskeletal poisons. GFP-APC deletion mutant analysis indicated that a protein truncated immediately after the APC armadillo repeat domain retained the ability to localise to adhesive membranes in transfected cells. Supporting this, we also observed junctional APC immunostaining in cultures of human colorectal cancer cell line that express truncated forms of APC. Conclusions Our data indicate that APC can be found in two spatially separate populations at the cell periphery and these populations can co-exist in the same cell. The first localisation is highly dynamic and associated with microtubules near free edges and in cell vertices, while the second is comparatively static and is closely associated with actin at sites of cell-cell contact. Our imaging confirms that human GFP-APC possesses many of the localisations and behaviours previously seen by live imaging of Xenopus GFP-APC. However, we report the novel finding that GFP-APC puncta can remain associated with the ends of shrinking microtubules. Deletion analysis indicated that the N-terminal region of the APC protein mediated its junctional localisation, consistent with our observation that truncated APC proteins in colon cancer cell lines are still capable of localising to the cell cortex. This may have implications for the development of colorectal cancer

    Methylmercury Exposure and Adverse Cardiovascular Effects in Faroese Whaling Men

    Get PDF
    Background: Methylmercury (MeHg), a worldwide contaminant found in fish and seafood, has been linked to an increased risk of cardiovascular mortality. Objective: We examined 42 Faroese whaling men (30–70 years of age) to assess possible adverse effects within a wide range of MeHg exposures from consumption of pilot whale meat. Methods: We assessed exposure levels from mercury analysis of toenails and whole blood (obtained at the time of clinical examination), and a hair sample collected 7 years previously. Outcome measures included heart rate variability (HRV), blood pressure (BP), common carotid intima-media thickness (IMT), and brainstem auditory evoked potentials (BAEP). We carried out multiple regression and structural equation model (SEM) analyses to determine the confounder-adjusted effect of mercury exposure. Taking into account correlations among related measures, we categorized exposure and outcomes in groups to derive latent exposure and response variables in SEMs. We used multiple regression analysis to compare the predictive validity of individual exposure biomarkers and the latent exposure variable on individual and latent outcomes. Results: The toenail mercury concentrations varied widely and had a geometric mean of 2.0 μg/g; hair concentrations averaged about 3-fold higher. Mercury exposure was significantly associated with increased BP and IMT. This effect was reflected by SEMs, but mercury in toenails tended to be the best effect predictor. Conclusions: The results support the notion that increased MeHg exposure promotes the development of cardiovascular disease

    EB1 Is Required for Spindle Symmetry in Mammalian Mitosis

    Get PDF
    Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells

    Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

    Get PDF
    BACKGROUND: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS: We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways

    Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records

    Get PDF
    Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electronic health record (EHR) data. The protocol comprises five main stages: formal problem definition, data pre-processing, architecture selection, calibration and uncertainty, and generalizability evaluation. We have applied the workflow to four endpoints (acute kidney injury, mortality, length of stay and 30-day hospital readmission). The workflow can enable continuous (e.g., triggered every 6 h) and static (e.g., triggered at 24 h after admission) predictions. We also provide an open-source codebase that illustrates some key principles in EHR modeling. This protocol can be used by interdisciplinary teams with programming and clinical expertise to build deep-learning prediction models with alternate data sources and prediction tasks

    LKB1/AMPK and PKA Control ABCB11 Trafficking and Polarization in Hepatocytes.

    Get PDF
    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation

    Ageing Simulation in Health and Social Care Education: A mixed methods systematic review

    Get PDF
    Abstract Aim: To identify, evaluate and summarise evidence from qualitative, quantitative and mixed method studies conducted utilising age-suits or other age simulation equipment, with health and social care students. Design: Convergent segregated mixed method review design as outlined by the Johanna Briggs Institute Data Sources: CINAHL (+ with Full Text), MEDLINE, PsycINFO, PubMed, SocINDEX, Web of Science, Cochrane Library, Emerald Insight, Proquest nursing, Science Direct, Wiley Online and BioMed Central (January 2000 – January 2020) Review methods: Convergent segregated synthesis was used to synthesise evidence from the studies, and the MERSQI checklist used to appraise quality. Results: A total of 23 studies were reviewed: one randomised control, two post-test only randomised control, three quasi-experimental, 15 one-group pre / post studies and two qualitative studies. Of the seventeen studies carrying out inferential statistics on attitude scores post intervention, 11 reported an improvement, three indicated no significant change and three reported worsening scores. Key themes included use of appropriate scales, type of equipment utilised, location and length of interactions, debriefing, and contextualisation of interventions in broader teaching. Conclusion: The impact of ageing simulation interventions on health and social care student’s attitudes to older people was predominantly positive. However, further high-quality research is warranted to understand the optimal use of such interventions within the context of healthcare for a growing ageing population. Impact: It is important health and social care staff have appropriate knowledge and training to enable them to provide high quality care to older people, and challenge potential ageism in the system. This review adds to the body of work around the use of simulation and experiential learning to educate health and social care students regarding ageing and ageism. It also offers recommendations for using ageing simulations effectively to inform attitudes of prospective professionals who will influence future health and social care. Keywords: Simulation, Ageing, Age-suit, Nursing, Health and social care, Education, Attitudes, Empathy, Experiential learning, Systematic revie
    corecore