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Abstract

Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an
important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning
process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences.
Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and
achieving expert performance remain.

Objective: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level
performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.

Methods: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical
practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as
part of this research, all in accordance with consensus organ at risk definitions.

Results: We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography
scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice
similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface
contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s
generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model
training.
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Conclusions: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy
for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency,
and safety of radiotherapy pathways.

(J Med Internet Res 2021;23(7):e26151) doi: 10.2196/26151
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Introduction

Background
Each year, 550,000 people worldwide are diagnosed with cancer
of the head and neck [1]. This incidence is rising [2] and more
than doubling in certain subgroups over the last 30 years [3-5].
Where available, most patients will be treated with radiotherapy,
which targets the tumor mass and areas at high risk of
microscopic tumor spread. However, strategies are needed to
mitigate the dose-dependent adverse effects that result from
incidental irradiation of normal anatomical structures (organs
at risk) [6-9].

Thus, the efficacy and safety of head and neck radiotherapy
depends on the accurate delineation of organs at risk and tumors,
a process known as segmentation or contouring. However, the
fact that this process is predominantly done manually means
that results may be both inconsistent and imperfectly accurate

[10], leading to large inter- and intrapractitioner variability even
among experts and thus variation in care quality [11].

Segmentation is also very time consuming: an expert can spend
4 hours or more on a single case [12]. The duration of resulting
delays in treatment initiation (Figure 1) is associated with an
increased risk of both local recurrence and overall mortality
[13-15]. Increasing demands for, and shortages of, trained staff
already place a heavy burden on health care systems, which can
lead to long delays for patients as radiotherapy is planned
[16,17], and the continued rise in head and neck cancer
incidence may make it impossible to maintain even current
temporal reporting standards [4]. Such issues also represent a
barrier to adaptive radiotherapy—the process of repeated
scanning, segmentation, and radiotherapy planning throughout
treatment, which maintains the precision of tumor targeting
(and organ at risk avoidance) in the face of treatment-related
anatomic changes such as tumor shrinkage [18].

Figure 1. A typical clinical pathway for radiotherapy. After a patient is diagnosed and the decision is made to treat with radiotherapy, a defined workflow
aims to provide treatment that is both safe and effective. In the United Kingdom, the time delay between decision to treat and treatment delivery should
be no greater than 31 days. Time-intensive manual segmentation and dose optimization steps can introduce delays to treatment.

Automated (ie, computer-performed) segmentation has the
potential to address these challenges. However, most
segmentation algorithms in clinical use are atlas based,
producing segmentations by fitting previously labeled reference
images to the new target scan. This might not sufficiently
account for either postsurgical changes or the variability in
normal anatomical structures that exist between patients,
particularly when considering the variable effect that tumors
may have on local anatomy; thus, they may be prone to
systematic error. To date, such algorithm-derived segmentations
still require significant manual editing, perform at expert levels

on only a small number of organs, demonstrate an overall
performance in clinical practice inferior to that of human
experts, and have failed to significantly improve clinical
workflows [19-26].

In recent years, deep learning–based algorithms have proven
capable of delivering substantially better performance than
traditional segmentation algorithms. Several deep
learning–based approaches have been proposed for head and
neck cancer segmentation. Some of them use standard
convolutional neural network classifiers on patches with tailored
pre- and postprocessing [27-31]. However, the U-Net
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convolutional architecture [32] has shown promise in the area
of deep learning–based medical image segmentation [33] and
has also been applied to head and neck radiotherapy
segmentation [34-47].

Despite the promise that deep learning offers, barriers remain
in the application of auto-segmentation in radiotherapy planning.
These include the absence of consensus on how expert
performance is defined, the lack of available methods by which
such human performance can be compared with that delivered
by automated segmentation processes, and thus how the clinical
acceptability of automated processes can be defined.

Objectives
In this paper, we address these challenges in defining
comparison metrics and report a deep learning approach that
delineates a wide range of important organs at risk in head and
neck cancer radiotherapy scans. We aim to achieve this using
a study design that includes (1) the introduction of a clinically
meaningful performance metric for segmentation in radiotherapy
planning, (2) a representative set of images acquired during
routine clinical practice, (3) an unambiguous segmentation
protocol for all organs, and (4) a segmentation of each test set
image according to these protocols by 2 independent experts.
In addition to the model’s generalizability, as demonstrated on
two distinct open-source data sets, by achieving performance
equal to that of human experts on previously unseen patients
from the same hospital site used for training, we aim to
demonstrate the clinical applicability of our approach.

Methods

Data Sets
University College London Hospitals (UCLH) National Health
Service (NHS) Foundation Trust serves an urban, mixed
socioeconomic and ethnic population in central London, United
Kingdom, and houses a specialist center for cancer treatment.
Data were selected from a retrospective cohort of all-adult (aged
>18 years) UCLH patients who underwent computed
tomography (CT) scans to plan radical radiotherapy treatment
for head and neck cancer between January 1, 2008, and March
20, 2016. Both initial CT images and rescans were included in
the training data set. Patients with all tumor types, stages, and
histological grades were considered for inclusion, as long as
their CT scans were available in digital form and were of
sufficient diagnostic quality. The standard CT pixel spacing
was 0.976×0.976×2.5 mm, and scans with nonstandard spacing
(with the exception of 1.25-mm spacing scans that were
subsampled) were excluded to ensure consistent performance
metrics during training. It should be noted that for the Cancer
Imaging Archive (TCIA) test set, the in-plane pixel spacing was
not used as an exclusion criterion, i ranged from 0.94 to 1.27
mm. For the public domain database for computational anatomy
(PDDCA) test set, we included all scans, and the voxels varied
between 2 to 3 mm in height and 0.98 to 1.27 mm in axial
dimension. Patients’ requests to not have their data shared for
research were respected.

Of the 513 patients who underwent radiotherapy at UCLH within
the given study dates, a total of 486 patients (94.7%; 838 scans;

mean age 57 years; male 337, female 146, and gender unknown
3) met the inclusion criteria. Of note, no scans were excluded
because of poor diagnostic quality. Scans from UCLH were
split into a training set (389 patients; 663 scans), validation set
(51 patients; 100 scans), and test set (46 patients; 75 scans).
From the selected test set, 19 patients (21 scans) underwent
adjudicated contouring described below. No patient was
included in multiple data sets; in cases where multiple scans
were present for a single patient, all were included in the same
subset. Multiple scans present for a single patient reflect CT
scans taken for the purpose of replanning radiotherapy owing
to anatomical changes during the course of treatment. It is
important for models to perform well in both scenarios as
treatment naive and postradiotherapy organ at risk anatomies
can differ. However, to avoid potential correlation between the
same organs segmented twice in the same data set, care was
taken to avoid this in the TCIA test set (described later in this
section).

In total, 21 organs at risk were selected throughout the head and
neck area to represent a wide range of anatomical regions. We
used a combination of segmentations sourced from those used
clinically at UCLH and additional segmentations performed
in-house by trained radiographers.

We divided our UCLH data set into the following categories:
(1) training set, used to train the model, a combination of UCLH
clinical segmentations and in-house segmentations, some of
which were only 2D slices (owing to the time required to
segment larger organs manually, we initially relied heavily on
sparse segmentations to make efficient use of the radiographers’
time). (2) UCLH validation set: used to evaluate model
performance and steer additional data set priorities, which used
in-house segmentations only, as we did not want to overfit any
clinical bias. (3) UCLH test set: our primary result set; each
scan has every organ at risk labeled and was independently
segmented from scratch by 2 radiographers before one of the
pairs of scans (chosen arbitrarily) was reviewed and corrected
by an experienced radiation oncologist.

As these scans were taken from UCLH patients not present
elsewhere, and to consider generalizability, we curated
additional open-source CT scans available from The Cancer
Genome Atlas Head-Neck Squamous Cell Carcinoma
(TCGA-HNSC) and Head-Neck Cetuximab [48-50]. The
open-source (category 4) TCIA validation set and (category 5)
TCIA test set were both labeled in the same way as our UCLH
test set.

Non-CT planning scans and those that did not meet the same
slice thickness as the UCLH scans (2.5 mm) were excluded.
These were then manually segmented in-house according to the
Brouwer Atlas (the segmentation procedure is described in
further detail in the Clinical Labeling and Annotation section
[51]). We included 31 scans (22 Head-Neck Cetuximab and 9
TCGA-HNSC) that met these criteria, which we further split
into validation (6 patients; 7 scans) and test (24 patients; 24
scans) sets (Figure 2). The original segmentations from the
Head-Neck Cetuximab data set were not included; a consensus
assessment by experienced radiographers and oncologists found
the segmentations either nonconformant to the selected
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segmentation protocol or below the quality that would be
acceptable for clinical care. The original inclusion criteria for
Head-Neck Cetuximab were patients with stage 3-4 carcinoma
of the oropharynx, larynx, and hypopharynx, with a Zubrod
performance of 0-1, and meeting predefined blood chemistry

criteria between November 2005 and March 2009. The
TCGA-HNSC data set included patients treated for head-neck
squamous cell carcinoma, with no further restrictions being
apparent [48,50].

Figure 2. Case selection from the University College London Hospitals and The Cancer Imaging Archive computed tomography data sets. A consort-style
diagram demonstrating the application of inclusion and exclusion criteria to select the training, validation, and test sets used in this work. CT: computed
tomography; HN_C: Head and Neck Carcinoma; N/A: not applicable; TCIA: The Cancer Imaging Archive; TCGA: The Cancer Genome Atlas; UCLH:
University College London Hospitals; Val: validation.

All test sets were kept separate during model training and
validation. Table 1 describes in detail the demographics and
characteristics within the data sets; to obtain a balanced
demographic in each of the tests, the validation and training
data sets, we sampled randomly stratified splits and selected
one that minimized the differences between the key
demographics in each data set.

In addition, the (6) PDDCA open-source data set consisted of
15 patients selected from the Head-Neck Cetuximab open-source
data set [48], owing to differences in selection criteria and test,

validation, or training set allocation, five scans were present in
both the TCIA and PDDCA test sets. This data set was used
without further postprocessing and only accessed once to assess
the volumetric Dice similarity coefficient (DSC) performance.
The PDDCA test set differs from the TCIA test set in both the
segmentation protocol and the axial slice thickness. The work
by Raudaschl et al [25] provides more details on the data set
characteristics and preprocessing.

Table 1 details the characteristics of these data sets and patient
demographics.
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Table 1. Data set characteristicsa.

PDDCAdTCIAcUCLHbData set

TestTestValidationTestValidationTrain

15 (15)24 (24)7 (6)21 (19)100 (51)663 (389)Total scans (patients), n

58.659.956.559.657.557.1Average patient age (years)

Sex, number of scans (number of patients)

2 (2)2 (2)2 (2)7 (6)36 (19)207 (115)Female

9 (9)20 (20)5 (4)14 (13)64 (32)450 (271)Male

4 (4)2 (2)0 (0)0 (0)0 (0)6 (3)Unknown

Tumor site, number of scans (number of patients)

2 (2)8 (8)0 (0)7 (6)27 (15)145 (86)Oropharynx

0 (0)3 (3)1 (1)4 (4)20 (8)80 (52)Lip, oral cavity, and pharynx

0 (0)7 (7)2 (2)1 (1)8 (5)53 (26)Tongue

0 (0)4 (4)2 (2)2 (2)8 (3)46 (31)Larynx

0 (0)0 (0)0 (0)0 (0)5 (3)48 (24)Nasopharynx

0 (0)0 (0)0 (0)1 (1)8 (3)37 (23)Head, face, and neck

0 (0)0 (0)0 (0)1 (1)2 (1)32 (19)Nasal cavity

0 (0)0 (0)0 (0)1 (1)2 (1)37 (18)Connective and soft tissue

0 (0)1 (1)2 (1)0 (0)1 (1)17 (10)Hypopharynx

0 (0)0 (0)0 (0)0 (0)2 (1)10 (7)Accessory sinus

0 (0)0 (0)0 (0)0 (0)1 (1)6 (2)Esophagus

0 (0)1 (1)0 (0)0 (0)0 (0)33 (20)Other

13 (13)0 (0)0 (0)4 (3)16 (9)119 (71)Unknown

Source, number of scans (number of patients)

0 (0)7 (7)2 (2)———fTCGAe

15 (15)17 (17)5 (4)———HN_Cetuxg

Site, number of scans (number of patients)

0 (0)0 (0)0 (0)21 (19)100 (51)663 (389)UCLH

0 (0)7 (7)2 (2)0 (0)0 (0)0 (0)MD Anderson Cancer Center

15 (15)17 (17)5 (4)0 (0)0 (0)0 (0)Unknown (US)

aTumor sites were derived from International Classification of Diseases codes. The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma [52]
is an open-source data set hosted on The Cancer Imaging Archive (TCIA). Head-Neck Cetuximab is an open-source data set hosted on TCIA [53].
Public Domain Database for Computational Anatomy data set released as part of the 2015 challenge in the segmentation of head and neck anatomy at
the International Conference on Medical Image Computing and Computer Assisted Intervention.
bUCLH: University College London Hospitals.
cTCIA: The Cancer Imaging Archive.
dPDDCA: Public Domain Database for Computational Anatomy.
eTCGA: The Cancer Genome Atlas Program.
fThe University College London Hospitals (UCLH) data set was sourced entirely from UCLH.
gHN_Cetux: Head-Neck Cetuximab.

Clinical Taxonomy
To select the organs at risk to be included in the study, we used
the Brouwer Atlas (consensus guidelines for delineating organs
at risk for head and neck radiotherapy, defined by an
international panel of radiation oncologists [51]). From this, we

excluded those regions that required additional magnetic
resonance imaging for segmentation, those that were not relevant
to routine head and neck radiotherapy, or those that were not
used clinically at UCLH. This resulted in a set of 21 organs at
risk (Table 2).
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Table 2. Taxonomy of segmentation regions.

Anatomical landmarks and definitionTotal number of labeled slices in-
cluded

Organ at risk

Sits inside the cranium and includes all brain vessels excluding the brainstem and
optic chiasm.

11,476Brain

The posterior aspect of the brain including the midbrain, pons, and medulla oblon-
gata. Extending inferior from the lateral ventricles to the tip of the dens at C2. It
is structurally continuous with the spinal cord.

34,794Brainstem

Embedded in the temporal bone and lateral to the internal auditory meatus.4526Cochlea-left

Embedded in the temporal bone and lateral to the internal auditory meatus.4754Cochlea-right

Concave-shaped gland located at the superolateral aspect of the orbit.17,186Lacrimal-left

Concave-shaped gland located at the superolateral aspect of the orbit.17,788Lacrimal-right

An oval structure that sits within the anterior segment of the orbit. Can be variable
in position but never sitting posterior beyond the level of the outer canthus.

3006Lens-left

An oval structure that sits within the anterior segment of the orbit. Can be variable
in position but never sitting posterior beyond the level of the outer canthus.

3354Lens-right

Encompassed by the thoracic cavity adjacent to the lateral aspect of the medi-
astinum, extending from the first rib to the diaphragm excluding the carina.

8340Lung-left

Encompassed by the thoracic cavity adjacent to the lateral aspect of the medi-
astinum, extending from the first rib to the diaphragm excluding the carina.

9158Lung-right

The entire mandible bone including the temporomandibular joint, ramus, and
body, excluding the teeth. The mandible joins to the inferior aspect of the temporal
bone and forms the entire lower jaw.

25,074Mandible

A 2 to 5 mm thick nerve that runs from the posterior aspect of the eye, through
the optic canal and ends at the lateral aspect of the optic chiasm.

3458Optic-nerve-left

A 2 to 5 mm thick nerve that runs from the posterior aspect of the eye, through
the optic canal and ends at the lateral aspect of the optic chiasm.

3012Optic-nerve-right

Spherical organ sitting within the orbital cavity. Includes the vitreous humor,
retina, cornea, and lens with the optic nerve attached posteriorly.

8538Orbit-left

Spherical organ sitting within the orbital cavity. Includes the vitreous humor,
retina, cornea, and lens with the optic nerve attached posteriorly.

8242Orbit-right

Multi-lobed salivary gland wrapped around the mandibular ramus. Extends medi-
ally to the styloid process and parapharyngeal space. Laterally extending to the
subcutaneous fat. Posteriorly extending to the sternocleidomastoid muscle. Ante-
rior extending to posterior border of the mandible bone and masseter muscle. In
cases where the retromandibular vein is encapsulated by parotid, this is included
in the segmentation.

8984Parotid-left

Multi-lobed salivary gland wrapped around the mandibular ramus. Extends medi-
ally to the styloid process and parapharyngeal space. Laterally extending to the
subcutaneous fat. Posteriorly extending to the sternocleidomastoid muscle. Ante-
rior extending to posterior border of the mandible bone and masseter muscle. In
cases where the retromandibular vein is encapsulated by parotid this is included
in the segmentation.

11,752Parotid-right

Hollow cavity that runs through the foramen of the vertebrae, extending from the
base of skull to the end of the sacrum.

37,000Spinal-canal

Sits inside the spinal canal and extends from the level of the foramen magnum to
the bottom of L2.

37,096Spinal-cord

Sits within the submandibular portion of the anterior triangle of the neck, making
up the floor of the mouth and extending both superior and inferior to the posterior
aspect of the mandible and is limited laterally by the mandible and medially by
the hypoglossal muscle.

10,652Submandibular-left

Sits within the submandibular portion of the anterior triangle of the neck, making
up the floor of the mouth and extending both superior and inferior to the posterior
aspect of the mandible and is limited laterally by the mandible and medially by
the hypoglossal muscle.

10,716Submandibular-right
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Clinical Labeling and Annotation
Owing to the large variability of segmentation protocols used
and annotation quality in the UCLH data set, all segmentations
from all scans selected for inclusion in the training set were
manually reviewed by a radiographer with at least 4 years of
experience in the segmentation of head and neck organs at risk.
Volumes that did not conform to the Brouwer Atlas were
excluded from the training. To increase the number of training
examples, additional axial slices were randomly selected for
further manual organ at risk segmentations to be added based
on model performance or perceived imbalances in the data set.
These were then produced by a radiographer with at least 4
years of experience in head and neck radiotherapy, arbitrated
by a second radiographer with the same level of experience.
The total number of examples from the original UCLH
segmentations and additional slices are provided in Table 2.

For the TCIA test and validation sets, the original dense
segmentations were not used owing to poor adherence to the

chosen study protocol. To produce the ground truth labels, the
full volumes of all 21 organs at risk included in the study were
segmented. This was done initially by a radiographer with at
least 4 years of experience in the segmentation of head and neck
organs at risk and then arbitrated by a second radiographer with
similar experience. Further arbitration was then performed by
a radiation oncologist with at least 5 years of postcertification
experience in head and neck radiotherapy. The same process
was repeated with 2 additional radiographers working
independently, but after peer arbitration, these segmentations
were not reviewed by an oncologist; rather, they became the
human reference to which the model was compared. This is
schematically shown in Figure 3. Before participation, all
radiographers and oncologists were required to study the
Brouwer Atlas for head and neck organ at risk segmentation
[51] and demonstrate competence in adhering to these
guidelines.

Figure 3. Process for the segmentation of ground truth and radiographer organs at risk volumes. The flowchart illustrates how the ground truth
segmentations were created and compared with independent radiographer segmentations and the model. For the ground truth, each computed tomography
scan in The Cancer Imaging Archive test set was segmented first by a radiographer and peer reviewed by a second radiographer. This then went through
one or more iterations of review and editing with a specialist oncologist before creating a ground truth used to compare with the segmentations produced
by both the model and additional radiographer. CT: computed tomography.

Model Architecture
We used a residual 3D U-Net architecture with 8 levels (Figure
4). Our network takes in a CT volume (single channel) and
outputs a segmentation mask with 21 channels, where each
channel contains a binary segmentation mask for a specific
organ at risk. The network consists of 7 residual convolutional
blocks in the downward path, a residual fully connected block

at the bottom, and 7 residual convolutional blocks in the upward
path. A 1×1×1 convolution layer with sigmoidal activation
produces the final output in the original resolution of the input
image. Each predicted slice had 21 slices of context. The
21-slice context (ie, 21 × 2.5 mm=52.5 mm) was found to
provide the optimal context. This is not the case with the 21
organs at risk used in this study.
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Figure 4. 3D U-Net model architecture. (a) At training time, the model receives 21 contiguous computed tomography slices, which are processed
through a series of “down” blocks, a fully connected block, and a series of “up” blocks to create a segmentation prediction. (b) A detailed view of the
convolutional residual down and up blocks and the residual fully connected block.

We trained our network with a regularized top-k-percent,
pixel-wise, binary, cross-entropy loss [54]; for each output
channel, the top-k loss selects only the k% most difficult pixels
(those with the highest binary cross-entropy) and only adds their
contribution to the total loss. This speeds up training and helps
the network to tackle the large class imbalance and to focus on
difficult examples.

We regularized the model using standard L2 weight

regularization with scale 10−6 and extensive data augmentation
using random in-plane (ie, in x and y directions only) translation,
rotation, scaling, shearing, mirroring, elastic deformations, and
pixel-wise noise. We used uniform translations between −32
and 32 pixels, uniform rotations between −9° and 9°, uniform
scaling factors between 0.8° and 1.2°, and uniform shear factors
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between −0.1 and 0.1. We mirrored the images (and adjusted
the corresponding left and right labels) with a probability of
0.5. We performed elastic deformations by placing random
displacement vectors (SD 5 mm, in-plane displacements only)
on a control point grid with 100×100×100 mm spacing and by
deriving the dense deformation field using cubic b-spline
interpolation. In the implementation, all spatial transformations
are first combined to a dense deformation field, which is then
applied to the image using bilinear interpolation and
extrapolation with zero padding. We added zero-mean Gaussian
intensity noise independently to each pixel with an SD of 20
Hounsfield units.

We trained the model with the Adam optimizer [53] for 120,000
steps and a batch size of 32 (32 graphical processing units) using
synchronous stochastic gradient descent. We used an initial

learning rate of 10−4 and scaled the learning rate by 1/2, 1/8,
1/64, and 1/256 at time steps of 24,000, 60,000, 108,000, and
114,000, respectively.

We used the validation set to select the model that performed
at over 95% for most organs at risk according to our chosen
surface DSC performance metric, breaking ties by preferring
better performance on more clinically impactful organs at risk
and the absolute performance obtained.

Performance Metrics
All performance metrics are reported for each organ
independently (eg, separately for just the left parotid), so we
only need to deal with binary masks (eg, a left parotid voxel
and a non–left-parotid voxel). Masks are defined as a subset of

, that is, (Figure 5).

Figure 5. Illustrations of masks, surfaces, border regions, and the “overlapping” surface at tolerance τ.

The volume of a mask is denoted as , with

With this notation, the standard (volumetric) DSC for two given
masks M1 and M2 and can be written as:

In the case of sparse ground truth segmentations (ie, only a few
slices of the CT scan are labeled), we estimate the volumetric
DSC by aggregating data from labeled voxels across multiple
scans and patients as

where the mask M1,p and the labeled region Lp represent the
sparse ground truth segmentation for a patient p and the mask
M2,p is the full volume predicted segmentation for the patient
p.

Owing to the shortcomings of the volumetric DSC metric for
the presented radiotherapy use case, we introduced the surface
DSC metric, which assesses the overlap of two surfaces (at a
specified tolerance) instead of the overlap of two volumes (see

Results section). A surface is the border of a mask, ,
and the area of the surface is denoted as

where is a point on the surface using arbitrary
parameterization. The mapping from this parameterization to a

point in is denoted as , that is, . With

this we can define the border region , for the surface
Si, at a given tolerance τ as (Figure 5)

J Med Internet Res 2021 | vol. 23 | iss. 7 | e26151 | p. 9https://www.jmir.org/2021/7/e26151
(page number not for citation purposes)

Nikolov et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Using these definitions, we can write the surface DSC at
tolerance τ as

using an informal notation for the intersection of the surface
with the boundary, that is,

Implementation of Surface DSC
The computation of surface integrals on sampled images is not
straightforward, especially for medical images, where the voxel
spacing is usually not equal in all 3 dimensions. The common
approximation of the integral by counting the surface voxels
can lead to substantial systematic errors.

Another common challenge is the representation of a surface
with voxels. As the surface of a binary mask is located between
voxels, a definition of surface voxels in the raster-space of the
image introduces a bias: using foreground voxels to represent
the surface leads to an underestimation of the surface, whereas
the use of background voxels leads to an overestimation.

Our proposed implementation uses a surface representation that
provides less-biased estimates but still allows us to compute
the performance metrics with linear complexity O(N), with N:
number of voxels). We placed the surface points between the
voxels on a raster that is shifted by half of the raster spacing on
each axis (see Figure 6 for a 2D illustration).

Figure 6. 2D illustration of the implementation of the surface Dice similarity coefficient. (a) A binary mask displayed as an image. The origin of the
image raster is (0,0). (b) The surface points (red circles) are located in a raster that is shifted half of the raster spacing on each axis. Each surface point
has 4 neighbors in 2D (8 neighbors in 3D). The local contour (blue line) assigned to each surface point (red circle) depends on the neighbor constellation.

For 3D images, each point in the raster has 8 neighboring voxels.

As we analyzed binary masks, there are only 28=256 possible
neighbor constellations. For each of these constellations, we
computed the resulting triangles using the marching cube
triangulation [55,56] and stored the surface area of the triangles

(in mm2) in a look-up table. With this look-up table, we then
created a surface image (on the above-mentioned raster) that
contains zeros at positions that have 8 identical neighbors or
the local surface area at all positions that have both foreground
and background neighbors. These surface images were created
for masks M1 and M2. In addition, we created a distance map
from each of these surface images using the distance transform
algorithm [57]. Iterating over the nonzero elements in the first
surface image and looking up the distance from the other surface
in the corresponding distance map allows the creation of a list
of tuples (surface element area and distance from other surfaces).
From this list, we can easily compute the surface area by

summing the area of the surface elements that are within the
tolerance. To account for the quantized distances, there is only

a discrete set of distances
between voxels in a 3D raster with spacing (d1, d2, d3)—we also
rounded the tolerance to the nearest neighbor in set D for each
image before computing the surface DSC. Our open-source
implementation of surface DSC provides more details.

Results

Selecting Clinically Representative Data Sets
Data sets are described in detail in the Methods section. In brief,
the first data set was a representative sample of CT scans used
to plan curative-intent radiotherapy of head and neck cancer for
patients at UCLH NHS Foundation Trust, a single high-volume
center. We performed iterative cycles of model development
using the UCLH scans (training and validation subsets), taking
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the performance on a previously unseen subset (test) as our
primary outcome.

It is also important to demonstrate a model’s generalizability
to data from previously unseen demographics and distributions.
To do this, we curated the test and validation data sets of
open-source CT scans. These were collected from the TCIA test
set [48-50] and the PDDCA data set released as part of the 2015
challenge (PDDCA test set [25]).

Table 1 details the characteristics of these data sets and their
patient demographics. Ethnicity and protected-group status are
not reported, as this information was not available in the source
systems. In total, 21 organs at risk were selected to represent a
wide range of anatomical regions throughout the head and neck.
To provide a human clinical comparison for the algorithm, each
case was manually segmented by a single radiographer with

arbitration by a second radiographer. This was compared with
our study’s gold standard ground truth graded by 2 other
radiographers and arbitrated by one of 2 independent specialist
oncologists, each with a minimum of 4 years specialist
experience in radiotherapy treatment planning for patients with
head and neck cancer.

An example of model performance is shown in Figure 7, two
further randomly selected UCLH set scans are shown in Figures
S1 and S2 of Multimedia Appendix 1 [19-31,34-46,56-90].
Three randomly selected TCIA set scans are shown in Figures
S3, S4 and S5 of Multimedia Appendix 1 to visually demonstrate
the model’s generalizability. We compared our performance
(model vs oncologist) to radiographer performance (radiographer
vs oncologist). For more information on data set selection and
inclusion and exclusion criteria for patients and organs at risk,
see the Methods section.
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Figure 7. Example results. Computed tomography (CT) image: axial slices at 5 representative levels from the raw CT scan of a male patient aged 55-59
years were selected from the University College London Hospitals data set (patient 20). These were selected to best demonstrate the organs at risks
included in the work. The levels shown as 2D slices have been selected to demonstrate all 21 organs at risks included in this study. The window leveling
has been adjusted for each to best display the anatomy present. Oncologist contour: the ground truth segmentation, as defined by experienced radiographers
and arbitrated by a head and neck specialist oncologist. Model contour: segmentations produced by our model. Contour comparison: contoured by
oncologist only (green region) or model only (yellow region). Best viewed on a display. CT: computed tomography.

A New Metric for Assessing Clinical Performance
In routine clinical care, algorithm-derived segmentation is
reviewed and potentially corrected by a human expert, just as
those created by radiographers currently are. Segmentation
performance is thus best assessed by determining the fraction
of the surface that needs to be redrawn. The standard volumetric
DSC [91] is not well suited to this because it weighs all regions
of misplaced delineation equally and independently of their
distance from the surface. For example, two inaccurate
segmentations could have a similar volumetric DSC score if
one were to deviate from the correct surface boundary by a

small amount in many places, whereas the other had a large
deviation at a single point. Correcting the former would likely
take a considerable amount of time as it would require redrawing
almost all of the boundary, whereas the latter could be corrected
much faster, potentially with a single edit action.

For quantitative analysis, we therefore introduced a new
segmentation performance metric, the surface DSC (Figure 8),
which assesses the overlap of two surfaces (at a specified
tolerance) instead of the overlap of two volumes. This provides
a measure of agreement between the surfaces of two structures,
which is where most of the human effort in correcting is usually
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expended. In doing so, we also addressed the volumetric DSC’s
bias toward large organs at risk, where the large (and mostly

trivial) internal volume accounts for a much larger proportion
of the score.

Figure 8. Surface Dice similarity coefficient performance metric. (a) Illustration of the computation of the surface Dice similarity coefficient. Continuous
line: predicted surface. Dashed line: ground truth surface. Black arrow: the maximum margin of deviation that may be tolerated without penalty, hereafter
referred to by τ. Note that in our use case each organ at risk has an independently calculated value for τ. Green: acceptable surface parts (distance
between surfaces ≤τ). Pink: unacceptable regions of the surfaces (distance between surfaces ≤τ). The proposed surface Dice similarity coefficient metric
reports the good surface parts compared with the total surface (sum of predicted surface area and ground truth surface area). (b) Illustration of the
determination of the organ-specific tolerance. Green: segmentation of an organ by oncologist A. Black: segmentation by oncologist B. Red: distances
between the surfaces.

When evaluating the surface DSC, we must define a threshold
within which the variation is clinically acceptable. To do this,
we first defined the organ-specific tolerances (in mm) as a
parameter of the proposed metric, τ. We computed these
acceptable tolerances for each organ by measuring the
interobserver variation in segmentations between 3 different
consultant oncologists (each with over 10 years of experience
in organ at risk delineation) on the validation subset of TCIA
images.

To penalize both false-negative and false-positive parts of the
predicted surface, our proposed metrics measure both the
nonsymmetric distances between the surfaces and then normalize
them by the combined surface area. Similar to volumetric DSC,
the surface DSC ranges from 0 (no overlap) to 1 (perfect
overlap).

This means that approximately 95% of the surface was properly
outlined (ie, within τ mm of the correct boundary), whereas 5%
needs to be corrected. There is no consensus as to what
constitutes a nonsignificant variation in such a segmentation.
Thus, we selected a surface DSC of 0.95, a stringency that likely
far exceeds the expert oncologist intrarater concordance [19,92].
For a more formal definition and implementation, see the
Methods section.

Model Performance
Model performance was evaluated alongside that of therapeutic
radiographers (each with at least 4 years of experience)
segmenting the test set of UCLH images independently of the
oncologist-reviewed scans (which we used as our ground truth).

The model performed similarly to humans. For all organs at
risk studied, there was no clinically meaningful difference
between the deep learning model’s segmentations and those of
the radiographers (Figure 9 and Tables S1 and S2, Multimedia
Appendix 1). For details on the number of labelled scans in the
UCLH test set, see Table S3 in Multimedia Appendix 1.

To investigate the generalizability of our model, we additionally
evaluated the performance of open-source scans (TCIA test set).
These were collected from sites in the United States, where
patient demographics, clinical pathways for radiotherapy, and
scanner type and parameters differed from our UK training set
in meaningful ways. Nevertheless, model performance was
preserved, and in 90% (19/21) organs at risk, the model was
performed within the threshold defined for human variability
(Figure 10). The fact that performance in 2 organs at risk
(brainstem and right lens) was less than that in UK data may
relate to issues of image quality in several TCIA test set scans.
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Figure 9. University College London Hospitals (UCLH) test set: quantitative performance of the model in comparison with radiographers. (a) The
model achieves a surface Dice similarity coefficient similar to humans in all 21 organs at risk (on the UCLH held out test set) when compared with the
gold standard for each organ at an organ-specific tolerance τ. Blue: our model; green: radiographers. (b) Performance difference between the model
and the radiographers. Each blue dot represents a model-radiographer pair. The gray area highlights nonsubstantial differences (−5% to +5%). The box
extends from the lower to upper quartile values of the data, with a line at the median. The whiskers indicate most extreme, nonoutlier data points. Where
data lie outside, an IQR of 1.5 is represented as a circular flier. The notches represent the 95% CI around the median. DSC: Dice similarity coefficient;
UCLH: University College London Hospitals.
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Figure 10. Model generalizability to an independent test set from The Cancer Imaging Archive (TCIA). Quantitative performance of the model on
TCIA test set in comparison with radiographers. (a) Surface Dice similarity coefficient (on the TCIA open-source test set) for the segmentations compared
with the gold standard for each organ at an organ-specific tolerance τ. Blue: our model, green: radiographers. (b) Performance difference between the
model and the radiographers. Each blue dot represents a model-radiographer pair. Red lines show the mean difference. The gray area highlights
nonsubstantial differences (−5% to +5%). The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers
indicate most extreme, nonoutlier data points. Where data lie outside, an IQR of 1.5 is represented as a circular flier. The notches represent the 95% CI
around the median. DSC: Dice similarity coefficient; TCIA: The Cancer Imaging Archive.

For more detailed results demonstrating surface DSC and
volumetric DSC for each individual patient from the TCIA test
set, see Table S4 and Table S5, respectively, in Multimedia
Appendix 1.

Comparison With Previous Work
An accurate quantitative comparison with previously published
literature is difficult because of inherent differences in
definitions of ground truth segmentations and varied processes
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of arbitration and consensus building. Given that the use of
surface DSC is novel in this study, we also reported the standard
volumetric DSC scores achieved by our algorithm (despite the
shortcomings of this method) so that our results can be directly
compared with those in the existing literature. An overview of
past papers that have reported mean volumetric DSC for
unedited automatic delineation of head and neck CT organs at
risk can be found in Table S6, Multimedia Appendix 1. Each
used different data sets, scanning parameters, and labeling
protocols, meaning that the resulting volumetric DSC results
varied significantly. No study, other than ours, segmented the
lacrimal glands. We compared these results with those obtained
when we applied our model to three different data sets: the TCIA
open-source test set, an additional test set from the original
UCLH data set (UCLH test set) and the data set released by the
PDDCA as part of the 2015 Medical Image Computing and
Computer Assisted Intervention head and neck radiotherapy
organ at risk segmentation challenge (PDDCA test set [25]). To
contextualize the performance of our model, radiographer
performance is shown on the TCIA test set, and oncologist
interobserver variation is shown on the UCLH test set.

Although not the primary test set, we nevertheless present
per-patient surface DSC and volumetric DSC for the PDDCA
test set in Table S7 and Table S8 in Multimedia Appendix 1,
respectively.

Discussion

Principal Findings
We demonstrated an automated deep learning–based
segmentation algorithm that can perform as well as experienced
radiographers for head and neck radiotherapy planning. Our
model was developed using CT scans derived from routine
clinical practice and therefore should be applicable in a hospital
setting for the segmentation of organs at risk, routine radiation
therapy quality assurance peer review, and in reducing the
associated variability between different specialists and
radiotherapy centers [93].

Clinical applicability must be supported not only by high model
performance but also by evidence of model generalizability to
new external data sets. To achieve this, we presented these
results on three separate test sets, one of which (the PDDCA
test set) uses a different segmentation protocol. In this study,
performance in most organs at risk was maintained when tested
on scans taken from a range of previously unseen international
sites. Although these scans varied in patient demographics,
scanning protocol, device manufacturer, and image quality, the
model still achieved human performance on 19 of the 21 organs
at risk studied; only the right lens and brainstem were below
radiographer performance. For these organs at risk, the
performance of the model might have been lower than expert
performance owing to lower image quality. This is particularly
evident for the right lens, where the anatomical borders were
quite indistinct in some TCIA test set cases, thus preventing
full segmentation by the model (Figure S6, Multimedia
Appendix 1). Moreover, a precise CT definition of the
brainstem’s proximal and distal boundaries is lacking, a factor
that might have contributed to labeling variability and thus to

decreased model performance. Finally, demographic bias may
have resulted from the TCIA data set selection for cases of more
advanced head and neck cancer [48] or from variability in the
training data [10].

One major contribution of this paper is the presentation of a
performance measure that represents the clinical task of organ
at risk correction. In the first preprint of this work, we introduced
surface DSC [70], a metric conceived to be sensitive to clinically
significant errors in organ at risk delineation. Surface DSC has
recently been shown to be more strongly correlated with the
amount of time required to correct segmentation for clinical use
than traditional metrics, including volumetric DSC [94,95].
Small deviations in organ at risk border placement can have a
potentially serious impact, increasing the risk of debilitating
side effects for the patient. Misplacement by only a small offset
may thus require the entire region to be redrawn, and in such
cases, an automated segmentation algorithm may offer no time
savings. Volumetric DSC is relatively insensitive to such small
changes in large organs, as the absolute overlap is also large.
Difficulties identifying the exact borders of smaller organs can
result in large differences in volumetric DSC, even if these
differences are not clinically relevant in terms of their effect on
radiotherapy treatment. By strongly penalizing border placement
outside a tolerance determined by consultant oncologists, the
surface DSC metric resolves these issues.

Although volumetric DSC is therefore not representative of
clinical consequences, it remains to be the most popular metric
for evaluating segmentation models and therefore the only
metric that allows comparison with previously published works.
In recent years, fully convolutional networks have become the
most popular and successful methodology for organ at risk
segmentation in head and neck CT for de novo radiotherapy
planning [40-45,58-69]. Although not directly comparable owing
to different data sets and labeling protocols, our volumetric
DSC results compare favorably with the existing published
literature for many of the organs at risk (see Table S6 and Figure
S7, Multimedia Appendix 1, for more details on this and other
prior publications). In organs at risk with inferior volumetric
DSC scores compared with the published literature, both our
model and human radiographers achieved similar scores. This
suggests that current and previously published results are
difficult to compare, either because of the inclusion of more
difficult cases than previous studies or because of different
segmentation and scanning protocols. To allow more objective
comparisons of different segmentation methods, we made our
labeled TCIA data sets freely available to the academic
community (see the Acknowledgments section on data
availability). At least 11 auto-segmentation software solutions
are currently available commercially, with varying claims
regarding their potential to lower segmentation time during
radiotherapy planning [96]. The principal factor that determines
whether automatic segmentation is time saving during the
radiotherapy workflow is the degree to which automated
segmentations require correction by oncologists.

The wide variability in state-of-the-art and limited uptake in
routine clinical practice motivates the need for clinical studies
evaluating model performance in practice. Future work will
seek to define the clinical acceptability of the segmented organs
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at risk produced by our models and estimate the time saving
that could be achieved during the radiotherapy planning
workflow in a real-world setting.

A number of other study limitations should be addressed in
future studies. First, we included only planning CT scans
because magnetic resonance imaging and positron emission
tomography scans were not routinely performed for all patients
in the UCLH data set. Some organ at risk classes, such as optic
chiasm, require co-registration with MR images for optimal
delineation, and access to additional imaging has been shown
to improve the delineation of optic nerves [29]. As a result,
certain organ at risk classes were deliberately excluded from
this CT-based project and will be addressed in future work that
will incorporate magnetic resonance imaging scans. A second
limitation is with regard to the classes of organs at risk in this
study. Although we presented one of the largest sets of reported
organs at risk in the literature [44,97,98], some omissions
occurred (eg, oral cavity) owing to an insufficient number of
examples in the training data that conformed to a standard
international protocol. The number of oncologists used in the
creation of our ground truth may not have fully captured the
variability in organ at risk segmentation or may have been biased
toward a particular interpretation of the Brouwer Atlas used as
our segmentation protocol. Even in an organ as simple as the

spinal cord that is traditionally reliably outlined by
auto-segmentation algorithms, there is ambiguity between the
inclusion of, for example, the nerve roots. Such variation may
widen the thresholds of acceptable deviation in favor of the
model, despite a consistent protocol. Future studies will address
these deficits alongside time-consuming lymph node
segmentation.

Finally, neither of the test sets used in this study included the
patients’ protected-characteristic status. This is a significant
limitation, as it prevents the study of intersectional fairness.

Conclusions
In conclusion, we demonstrated that deep learning can achieve
human expert–level performance in the segmentation of head
and neck organs at risk in radiotherapy planning CT scans, using
a clinically applicable performance metric designed for this
clinical scenario. We provided evidence of the generalizability
of this model by testing it on patients from different geographies,
demographics, and scanning protocols. This segmentation
algorithm was performed with similar accuracy compared with
experts and has the potential to improve the speed, efficiency,
and consistency of radiotherapy workflows, with an expected
positive influence on patient outcomes. Future work will
investigate the impact of our segmentation algorithm in clinical
practice.
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Multimedia Appendix 1
Additional Tables S1-S8 and Figures S1-S7 show further visual examples of model outputs, performance metrics and detailed
comparisons to previously published works.
[PDF File (Adobe PDF File), 10937 KB-Multimedia Appendix 1]
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