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Abstract

Early prediction of patient outcomes is key to unlocking the potential for targeted preventive

care. This protocol describes a practical workflow for developing deep learning risk models for

early prediction of various clinical and operational outcomes using structured electronic health

record (EHR) data, discussing the prediction of acute kidney injury (AKI) as an exemplar. The

protocol consists of 34 steps grouped into the following stages: formal problem definition, data

pre-processing, architecture selection, calibration and uncertainty estimation, generalisability

evaluation. Additionally, we demonstrate the application of this protocol to three other endpoints

- mortality, length of stay and 30-day hospital readmission - for both continuous predictions

(e.g. triggered every 6h) and static predictions (e.g. triggered at 24h post admission). The

performance on these additional endpoints exceeded most comparable literature benchmarks.

This protocol is accompanied by an open-source codebase that illustrates key considerations for

EHR modeling and may be customised to alternate data formats and prediction tasks.

Keywords: machine learning, deep learning, artificial intelligence, electronic health records,

risk prediction, acute kidney injury, mortality, length of stay, readmission

1 Introduction

Early prediction of patient outcomes is a major focus of clinical quality guidelines for deterio-

ration [1], sepsis [2], acute kidney injury (AKI) [3], hospital readmissions [4], etc. Quality im-

provement initiatives aiming to deliver anticipatory care often consist of two components: (i) an

afferent limb, to identify high-risk patients (e.g. early warning scores); and (ii) an efferent limb,

to respond to that alert (e.g. clinical outreach team) [5]. Traditionally, the afferent limb involves

a rule-based patient risk score - for example, the National Early Warning Score (NEWS2) and

Modified Early Warning Score (MEWS) for acute deterioration [6, 7] or the LACE and HOS-

PITAL scores for readmission [8, 9]. Rule-based scores are limited in that they are typically

not personalised to the patient (with the same thresholds and coefficients used population-wide),
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rarely use temporal or trend information, have a relatively limited input feature space, and have

been associated with high false positive rates and consequent alert fatigue [10, 11].

The emerging opportunity to run machine learning (ML) models on continuously streamed

electronic health record (EHR) data may help to tackle some of the above limitations. ML mod-

els have been developed to predict a wide array of clinical and operational outcomes, in order to

risk-stratify patients and inform treatment decisions. Use cases have ranged from mortality and

length of stay prediction to more targeted algorithms for AKI, sepsis, shock or delirium, with an

increasing focus on deep learning approaches [12–34].

To date, few of these models have been validated prospectively and adopted in routine practice

[35, 36]; however implementation studies are beginning to emerge [37]. As ML systems start

to infiltrate clinical practice, it is critical that the upstream data-science pipelines for develop-

ing and evaluating deep learning models with EHR data are robust and well specified. Several

guidelines have recently been published about the development of ML models in healthcare, cov-

ering key principles such as problem selection, fairness, bias, model surveillance and outcomes

evaluation across various data modalities [38–43]. In addition, there are initiatives to create

standardised reporting guidelines for ML studies using clinical data, including the TRIPOD-ML

framework [44, 45]. However, few systematic protocols exist for the development of deep learn-

ing models using EHR data, detailing the practical steps and challenges of training risk models

using retrospective data.

In this protocol, we outline a clear workflow for developing supervised deep learning models

on structured EHR data (excluding free-text clinical notes). The AKI prediction model intro-

duced in Tomasev etal. [12] is used as the primary exemplar; however the protocol can be

applied to a wide range of clinical and/or operational use cases and is demonstrated on three

additional endpoints: mortality, length of stay and hospital readmission.
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1.1 Development of the protocol

The protocol references the clinical use case of AKI prediction, as described in our previous

work [12]. The AKI prediction model was developed using a large EHR dataset from the US De-

partment of Veterans Affairs (VA) [46], consisting of de-identified longitudinal data on 703,782

adult patients across 172 inpatient and 1,062 outpatient sites. Inclusion criteria were patients

aged between 18 and 90 years admitted for secondary care to medical or surgical services from

the beginning of October 2011 to the end of September 2015. Due to the patient population of

the VA, the dataset consisted of 93.6% male subjects. The dataset included laboratory tests, vital

signs, medications, admissions, transfers, outpatient visits, diagnoses as International Classifica-

tion of Diseases (ICD9) codes and procedures as Current Procedural Terminology (CPT) codes.

All patient data were de-identified. Additional precautions beyond standard de-identification

were taken to safeguard patient privacy: free text notes and rare diagnoses were excluded; many

feature names were obfuscated (i.e. the feature value was preserved but the name was obfus-

cated); and all patient records were time-jittered, respecting relative temporal relationships for

individual patients. A more comprehensive dataset description is provided in the Methods and

Extended Data Table 6 of [12]. This protocol implicitly assumes that the raw EHR data has been

extracted in tabular format from a research data warehouse, with feature names and correspond-

ing continuous or discrete values. Standard EHR data models, e.g. Fast Healthcare Interop-

erability Resources (FHIR) or the Observational Medical Outcomes Partnership (OMOP) data

model could be converted to tabular format or embedded as a vector representation as per [14].

The protocol involves five broad stages: (a) formal problem definition, (b) data pre-

processing, (c) architecture selection, (d) calibration and uncertainty estimation, and (e) model

generalisability evaluation. The protocol is intended to be applicable to a range of prediction tar-

gets. Here we present novel results on several non-AKI endpoints: mortality, length of stay and

readmission. These endpoints were chosen because they could be reliably identified in the cur-

rent dataset and numerous ML benchmarks were available in the literature. Additionally, mor-

tality and readmission have been identified as key operational use cases where analytics could
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reduce patient harm and healthcare cost [47]. We also present results for alternate temporal con-

figurations including different triggering schemes (i.e. static predictions versus continuous or

regularly-triggered predictions) and different lookahead windows. The protocol could feasibly

be generalised to other targets over acute and chronic timescales, such as sepsis, ICU transfer or

chronic disease progression.

The protocol consists of 34 steps. While no individual step is methodologically novel, the

steps related to auxiliary multi-tasking, interval masking, architecture ablation, uncertainty esti-

mation and clinically-motivated operating points are not in widespread use in the EHR literature.

The protocol is accompanied by an open-sourced codebase which illustrates many of these key

components. Although customisation is required to use this protocol on new EHR datasets and

tasks, we believe this is a useful high-level framework that addresses some of the nuances of

supervised learning with EHRs.

1.2 Comparison with other methods

Protocols for developing risk prediction models have previously been proposed [38, 40, 44, 48].

These works tend to describe high-level principles in algorithm design and implementation;

whereas our protocol details an explicit methodology for developing deep learning models tai-

lored to longitudinal EHR data, with practical guidance around data pre-processing, architecture

selection, hyperparameter sweeps, post-processing and evaluation.

Steyerberg et al. [48] provide a useful framework including seven steps for model develop-

ment and four for model validation; however the framework is focused on regression models at

a single time-point with a much smaller input feature space, and does not address the nuances

of deep learning with large EHR datasets. Chen et al. provide a rigorous review of the steps

involved in training and evaluating deep learning models [38]; however our protocol provides

more granular detail about the step-by-step approach for dealing with structured EHR data and

showcases its application to four distinct prediction targets.

There is a wealth of recent work describing the development of deep learning models for
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various EHR endpoints, which follow the steps outlined in our protocol to varying degrees [13–

29, 31–34, 49]. While direct comparison of model performance against these prior works is

challenging since different datasets are used and experimental setups for the same task can differ

(in terms of endpoint definition, lookahead window, triggering frequency, etc), we endeavour to

compare our results for mortality, length of stay and readmission with previous ML benchmarks

(Section 4).

1.3 Expertise needed to implement the protocol

Successful application of the protocol requires interdisciplinary collaboration. Some steps call

for significant technical expertise in deep learning and should be executed by researchers with

statistical and ML skills; while others require clinical or operational knowledge and should be

executed by clinicians or informaticians. Prospective evaluation calls for experts in trial design

and outcomes evaluation. As a guide, steps 1-6, 8, 15-16, 24, 29- 30 and 34 are likely to be

clinician-led, while steps 7, 9-14, 17-23, 25-28, 31-33 are likely to be engineer-led.

1.4 Limitations

The dataset from [12] was curated for the purpose of AKI prediction. Additional measures be-

yond de-identification were taken to preserve privacy, including obfuscation of many feature

names and jittering of continuous variables. In order to demonstrate the generalisability of the

protocol to other endpoints, we showcase models for mortality, length of stay and readmission;

however the selection of auxiliary tasks and the input features for the baseline models were con-

strained by the panel of named features available for the AKI study (the remaining feature names

were obfuscated but values preserved). Performance is still comparable with literature bench-

marks, however these models should be considered as prototypes for demonstrating methods

rather than clinical-grade ML systems.

The dataset used here was from a diverse range of health facilities and geographies within the

VA network, spanning over 5 years; however was limited by a lack of gender diversity due to the
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predominantly male patient population. Furthermore, the protocol does not explicitly deal with

fairness evaluation. Principles of ML fairness should infuse the entire protocol from problem

conception and dataset choice to eval strategy and deployment, however we refer to previous

works for a more formal discussion [50, 51].

The protocol is intended to illustrate modeling considerations agnostic to EHR data format.

Although we provide exemplar data at different stages of pre-processing, this is not intended as

a canonical data representation. We refer the reader to alternate works describing how standard

EHR data formats such as FHIR may be embedding into a vector representation [14], to which

this protocol could be applied.

This protocol does not support using unstructured text in clinical notes, which constitutes a

significant portion of the information content of the EHR [52]. The main reason for the exclusion

is that the research dataset used for model development in [12] did not include clinical notes.

The protocol could be extended with a natural language processing (NLP) component, which

could either be pre-trained and fine-tuned, or trained end-to-end along with the risk model [53].

Finally, the protocol does not currently provide any causal guarantees, allowing only for as-

sociative modelling between input features and outcome targets. We emphasise that causal in-

ference using observational EHR data is an important area of active research, which stands to

assist in knowledge discovery, ML robustness and fairness [26, 54, 55].

2 Materials

Execution of the protocol requires access to data, computational resources, and relevant software

packages for data analysis and machine learning. Here we list the key software packages used

in [12]; however there are many alternative infrastructure options available.

2.1 Software

• Data processing framework Apache Beam (https://beam.apache.org/)

https://beam.apache.org/
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• Plotting library Matplotlib [56] (https://matplotlib.org/)

• Scientific computing library Numpy [57] (https://www.numpy.org/)

• Scientific computing library Scipy [58] (https://www.scipy.org/)

• Plotting library Seaborn (https://seaborn.pydata.org/)

• Machine learning library Scikit-learn [59] (https://scikit-learn.org/)

• Machine learning library Sonnet [60] (https://github.com/deepmind/

sonnet/)

• Machine learning framework TensorFlow [61] (https://github.com/

tensorflow/tensorflow/)

• Machine learning library XGBoost [62] (https://github.com/dmlc/

xgboost/)

3 Procedure

The protocol consists of 34 steps, broken into the following stages: formal problem definition

(6 steps); data pre-processing (10 steps); architecture selection (9 steps); risk calibration and

uncertainty (4 steps); and model generalisability evaluation (5 steps).

Formal problem definition

1. Evaluate the feasibility of a clinical use case: For this protocol to be applicable to a

particular clinical use case, it must meet several basic conditions: (i) there should be a

computable definition of the target outcome or sufficiently large manually-labelled train-

ing dataset; (ii) there must be predictive signal in routinely collected structured EHR data

(might it be possible for a specialist clinician to forecast this?); and (iii) the temporal gran-

ularity of the EHR must be compatible with the actionable time window of the prediction

https://matplotlib.org/
https://www.numpy.org/
https://www.scipy.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://github.com/deepmind/sonnet/
https://github.com/deepmind/sonnet/
https://github.com/tensorflow/tensorflow/
https://github.com/tensorflow/tensorflow/
https://github.com/dmlc/xgboost/
https://github.com/dmlc/xgboost/
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(typically, the latter is a multiple of the former). Refine the research question through a

cycle of clinician and patient engagement, referencing clinical guidelines and literature

evidence as appropriate. Map out real world clinical pathways and identify opportuni-

ties for the output of the model to be integrated into existing workflows, including who

the likely end users will be and the potential channels for model output (e.g. interruptive

versus non-interruptive alerts [63]).

2. Define outcome labels: Identify an appropriate ground truth outcome label for supervised

learning. One approach is to use e-alerting criteria, such as the NHS AKI e-alert [64] or

the St Johns Sepsis Agent [65], which only use data available up to the time of the trigger.

Another is to use data from the entire admission to timestamp outcomes of interest -

such as using downstream outcomes to identify the most severe cases of AKI or sepsis.

Outcomes may also be defined based on clinician actions (e.g. sepsis definitions based

on the collection of a blood culture or antibiotic prescriptions) [66]; however this may

introduce biases and encourages the model to predict outcomes only on those patients

who have historically been investigated/treated. The gold standard is manual chart review,

which may be used in conjunction with one or more of the above methods to validate

the labelling approach. One major issue in EHR data is label leakage - where explicit

indications of the outcome label are present at an earlier timepoint. Some studies suggest

enforcing a gap time between the outcome label and the prediction trigger to reduce this

risk [67]. In some cases, the width of the timesteps may have the effect of introducing a

time buffer (although the gap is variable) - e.g. in [12], all entries in the same 6h bucket

as the outcome label were excluded from the model input.

3. Assess dataset quality: Produce a formal dataset specification with descriptive statistics

about each data element, including outliers and missingness. Assess the distributions of

vitals and laboratory tests and compare against known physiological ranges. Harmonise

admission records based on length of stay to concatenate overlapping admissions. As-
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sess and report on the demographic diversity of the dataset. Consider using mitigation

strategies to address data imbalance, for example oversampling/undersampling. Compile

a random sample of the data for manual assessment by clinical experts, with particular

focus on the fidelity of the outcome label.

4. Define inclusion and exclusion criteria: In support of a future prospective deployment,

inclusion/exclusion criteria should be defined based on baseline criteria available from

the point where model inference begins, rather than retrospective criteria such as percent

missingness. Consider patient-level factors such as demographics, as well as environmen-

tal factors such as clinical setting or ward.

5. Define time formulation: Define the trigger time(s) and lookahead window(s) for pre-

diction tasks (Figure 1). The trigger time refers to when, during an admission, inference

will be performed - it may be a single static prediction e.g. at 24 hours after admission;

continuous predictions e.g. triggered on an hourly basis; or dynamic predictions triggered

when some criteria are satisfied e.g. when vitals are out of range. The lookahead window

is the time interval after the trigger time in which the endpoints are defined. For AKI pre-

diction we trialled lookahead windows ranging from 6 to 72 hours in 6h increments. The

trigger time and lookahead window should be guided by domain knowledge about when

early clinical markers may manifest and the window within which a prediction is clinically

actionable. The interventions for AKI include medication review, fluid management, sep-

tic workup, etc., all of which may be effective in the 48h preceding AKI onset [68]. By

contrast, for the mortality prediction task in Section 4 we also consider longer lookaheads

(30, 90 days) which may be appropriate for sub-acute decisions around limits of care and

palliative care referrals as per [19].

6. Identify auxiliary prediction targets: Auxiliary prediction targets can help to improve

model performance on the primary prediction task, because concurrently learning multiple

clinically-related endpoints may lead to a better internal data representation. The choice of
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Outpatient events

6h

New data input 
at time step

Risk of AKI within
next 48 hours

Diagnoses Medications Observations Procedures Labs

Sequential
patient history

6h

Inpatient events

Risk of AKI predicted
continuously through admission

Now

100%

0%

Future events

Figure 1 Sequential risk prediction from EHR data: Rolling predictions using structured EHR data,
here illustrating the prediction of AKI within 48h at a 6-hrly triggering frequency.

auxiliary tasks and how to configure the losses are topics of active research [20, 32, 69, 70].

At a high-level, the goal is to identify physiological observations directly related to the

primary clinical endpoint. In the case of AKI, we used the maximum values (across the

same set of lookahead windows as for the primary AKI endpoint) of 7 relevant laboratory

tests known to rise in conjunction with AKI: creatinine, urea nitrogen, sodium, potassium,

chloride, calcium and phosphate. Auxiliaries were modelled as separate regression tasks

at each timestep, but the losses were combined into a single auxiliary loss. Auxiliary

prediction tasks could potentially be used to model competing risks, as well as regularise

the model and help with explainability of predictions. The panel of auxiliary tasks may be

refined during training based on the performance uplift on the validation set.
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Data pre-processing

7. Create data splits: Partition the dataset by randomly allocating patients into the follow-

ing splits: training, validation, calibration and test. The entire patient record should be

allocated to a single split, rather than having admissions separated across splits which

risks information leakage. The minimum size of each split needs to be sufficient to derive

valid statistical conclusions and should be based on an appropriate power calculation. For

sufficiently large datasets, assigning 80% of the data to the training split, 5% to the valida-

tion split, 5% to the calibration split and 10% to the test split is a reasonable choice [12].

Only the training set is used for model development (Steps 8-25), with the test set held

out from any analyses until the final model parameters are fixed. A calibration split is

especially critical if the model is going to be used as a risk score or for continuous alerting

(see Step 26).

8. Feature engineering: Seek input from clinicians and informaticians familiar with the

source data to identify the most relevant subset of features from the complete input space.

Features may be eliminated because the data quality is poor, they are clinically unrelated,

too site-specific, etc. Identify a set of manually-engineered features that may hold predic-

tive value. Examples include clinically-relevant ratios (e.g. ratio of blood urea nitrogen

to serum creatinine) and interaction terms (see Supplementary Materials in [12]). These

manually-engineered features are most important for the baseline models against which

the deep models will be evaluated. Importantly, the feature engineering pipeline should

be defined using the training set.

9. Generate a sequential representation of patient data: First, define the length of the

discrete time window (timestep size). This was set as 6h in [12]; however can be on the

order of minutes to days depending on the granularity of the data and triggering frequency

of the prediction. Note that the timestep size must be less than or equal to the triggering

frequency. There is a trade-off to be made in selecting the timestep size: short timesteps
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risk being empty due to irregular sampling of EHR entries; however longer timesteps may

introduce lossiness as the ordering of events is not preserved within each step. Repeated

values for a given feature within a time bucket must be aggregated - typically using the

mean or median, but other aggregation functions are valid. For entries where the times-

tamp is unknown, use a surrogate bucket - e.g. many EHR events may be associated with

a day but no specific timestamp, so can be grouped into a surrogate bucket. This bucket is

assigned to the end of that day to prevent leakage of future information in previous buck-

ets. For empty timesteps during intervals where inference must be regularly triggered

(e.g. during an inpatient admission), include an empty set. Finally, concatenate the entire

patient record into a sequential representation running from the first to the last available

data point, organised into distinct clinical events within inpatient and outpatient episodes

(see Figure 2). Labels for the primary outcome and auxiliary targets should be appended

at each timestep.

Admissions

Outpatient events

Episode

Admission metadata

Clinical Events

Admission

ID

Demographic metadata

Episodes

Labels

Patient

Clinical Events

Outpatient Event

Timestamp

Clinical Event Entries

Labels

Clinical Event

Category (lab/vital/etc)

Feature

Value

Clinical Event Entry

Outcome label (e.g. AKI 1+ 
within 48h)

Label

Figure 2 Sequential representation: The sequential representation consists of a sequence of clinical
event entries grouped into clinical events for each time bucket, which in turn are grouped by episode
(admissions versus outpatient events).

10. Clean EHR timestamps: Beware of entries that may have a discrepancy between the

EHR timestamp and the true availability of the data to clinicians. In the raw dataset

used in [12], for example, diagnosis codes were uniformly timestamped at the beginning

of admission even though the actual diagnosis was likely made at a different time (ICD

codes being typically assigned at the time of discharge). Although this granularity was not

available in the VA dataset, it may be possible to delineate several important timestamps

for each entry - e.g. a laboratory test might have timestamps for when the order was
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placed, when the sample was collected and when the result was visible in the EHR. It may

be worth encoding each of these timesteps as distinct events or only using the lattermost

timestamp. Where there is ambiguity around timestamps, move the relevant entries to the

end of the relevant episode to avoid information leakage.

11. Aggregate historical features: For the baseline (non-recurrent) models that do not ex-

plicitly handle temporal input, generate a set of historical aggregate features. The look-

back duration will depend on the clinical endpoint and should be guided by domain exper-

tise. Define a set of statistical functions to use for feature aggregation, e.g. count, mean,

median, standard deviation, minimum, maximum, average difference between subsequent

measurements (these must be treated as distinct features, leading to a dimensionality in-

crease). For non-numerical features, record a binary flag for whether they were present

in the lookback window. In practice, we used 48 hours for shorter history, and longer

historical trends were captured by considering 6 months, 1 year or 5 years prior.

12. Vectorise the event sequence: Vectorisation refers to transforming the sequential data

representation into a feature vector appropriate for model input at each timestep. Since

there can be valuable information in the pattern of missingness, a useful strategy for con-

tinuous features is to explicitly encode binary indicator variables (presence features) to

enable the model to distinguish between a missing value in that timestep and a numerical

value of zero [71]. Although zero imputation in conjunction with presence features was

used in [12], there are numerous imputation strategies available for missing data including

carry-forward, mean/median, and physiological reference imputation; as well as more ad-

vanced methods that have shown promise in EHR timeseries including multivariate impu-

tation by chained equations (MICE) [72], Gaussian processes [73], generative adversarial

networks [74], etc. Continuous features may also be associated with additional indicator

variables denoting whether the value is high/normal/low based on local reference ranges.

Represent categorical features using one-hot encoding.
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Raw EHR

Sequentialise Vectorise
Feature stats & 
outlier filtering

Normalise
Sparse 

encoding

Sequence Example

Figure 3 Pre-processing workflow: Conversion of raw EHR data into a sequential representation,
followed by vectorisation, normalisation (using feature statistics computed on the training data) and sparse
encoding.

13. Cap outlier numerical values: For every input feature, cap values at the the 1st and

99th percentile values on the training split (or appropriate maximum/minimum bounds

guided by clinician input). This is important as data entry errors can occur resulting in

physiologically implausible, extreme outliers e.g. age above 150 years.

14. Normalisation and sparse encoding: To improve convergence speed [75], normalise

the capped numerical input features to unit range or standardise to unit variance. Both

approaches yielded similar results in [12]. Sparse encoding allows for a more efficient

data representation of the sparse EHR feature space where only the explicitly non-zero

values are represented. The sparse tensor consists of separate dense tensors denoting

indices, feature values and original dense shape. This can then be converted to a required

sequence example format for model input (Figure 3).

15. Select performance metrics: Define a set of relevant metrics for the primary use case as

well as the auxiliary prediction targets. Select a) development metrics to be used for ar-

chitecture selection; and b) final evaluation metrics to report. For classification tasks, use

both the area under the precision-recall curve (PR AUC) and the area under the receiver

operating characteristic curve (ROC AUC) in model development, since PR AUC is better

suited to class imbalances [76]. Early prediction histograms are also valuable for fixed-

window prediction tasks to demonstrate the latency between prediction and outcome (see
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Figure 3 in [12]). Time-to-event or survival modelling is an alternate approach that may be

used for continuous prediction tasks, for which there are emerging deep learning formula-

tions [77]. For all evaluation metrics in continuous predictions tasks, there is an important

distinction between timestep-level metrics and outcome-level metrics - e.g. the timestep

precision and recall can be calculated by averaging the performance across all timesteps

for which the model is being evaluated; however we can also calculate an outcome-level

recall by examining what percentage of the outcomes (e.g. AKI episodes) have at least

one correct prediction within a 48h window preceding onset. For both metrics, it may be

acceptable depending on the clinical scenario to introduce tolerance in evaluation - e.g.

accepting a positive prediction 48-60h prior to AKI onset as a true positive (as opposed to

a false positive under a strict 48h lookahead). Results in [12] and Section 4 were computed

without a tolerance buffer.

16. Interval censoring: Define interval censoring masks for both model training and evalu-

ation. A mask refers to a sequence of binary flags overlaid on the event sequence, which

indicates whether a timestep is included in training or evaluation. For example, in the

AKI prediction use case, patients undergoing dialysis were excluded both from training

and testing splits using a number of procedure codes to define the mask. Importantly,

training and evaluation masks may be different. For example, intervals where the patient

had AKI were included in the training procedure as there are still valuable physiological

relationships between this timestep and future creatinine values; however they were ex-

cluded from evaluation as these timesteps would not be alerted on in practice. Adapting

the training and evaluation masks can enable versatile experimental setups - e.g. predict-

ing inpatient mortality only at points where the patient triggers a NEWS2 alert. After

evaluation masks have been defined, it is possible to compute the outcome prevalence at

an episode level (i.e. percentage of patients with AKI, or number of distinct AKI seg-

ments) and at a timestep level (i.e. percentage of timesteps with a positive label for AKI

within 48h). This class distribution should be reported alongside a model to contextualise
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the performance metrics.

Model architecture selection

17. Train baseline models: Train a panel of baseline models, such as logistic regression or

XGBoost [62]. For these models, a subset of clinically-relevant and manually-engineered

features (Step 8) may be selected. Interrogating the coefficients and feature importances

of baseline models can assist in identifying label leakage, and guide redefinition of the

outcome label if required. Confidence intervals for the performance metrics of baseline

models should be calculated using a percentile bootstrap estimator [78].

18. Feature embedding: For each timestep, transform the sparse input tensors into a lower-

dimensional continuous representation (i.e. embedding), that can be used as an input to

the deep recurrent architecture. Multiply the sparse tensor by a lookup embedding matrix

that is randomly initialized. If multiple features are present at a given timestep, aggre-

gate the lookup embeddings - they were summed in [12] but the aggregation function can

be tuned. Pass this to a multi-layer perceptron (MLP) embedding module with residual

connections and L1 regularisation to reduce overfitting. Sweep over a range of embed-

ding sizes (a 2-layer embedding module with size 400 was used in [12]). In [12], there

were separate embedding modules for different types of input features (numerical versus

presence), and the outputs were then concatenated. Autoencoders (AEs) or variational au-

toencoders (VAEs) may be trialled, as these have shown promise in learning richer patient

representations for predictive modelling [23, 79].

19. Trial multiple deep architectures: Implement a range of recurrent (and optionally con-

volutional) frameworks that receive the feature embeddings and feed into the primary

and auxiliary output heads. Make the frameworks configurable with respect to recur-

rent cell types and their parameters, as well as different types of convolutional kernels.

The following are some of the recurrent neural network (RNN) cells that can be trialled:
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long short-term memory (LSTM) [80], update gate RNN (UGRNN), intersection RNN

[81], simple recurrent unit (SRU) [82, 83], gated recurrent unit (GRU) [84], neural Turing

machine (NTM) [85], memory-augmented neural network (MANN) [86], differentiable

neural computer (DNC) [87], and relational memory core (RMC) [88]. Where there are

multiple training heads (e.g. the primary output and the auxiliary tasks at various looka-

head horizons), weights may be shared through the deep model, culminating in logistic

layers specific to each task. Consider adding a cumulative distribution function to these

logistic layers to encourage monotonicity in prediction outputs across overlapping looka-

head horizons (e.g. risk of AKI within 48 hours should be greater than or equal to the risk

within 24 hours). A comparison of deep architectures and baseline models is shown in

Supplementary Table 4 in [12]. The architecture used in [12], shown in Figure 4, was a 3-

layer LSTM [80] with highway connections [89] followed by linear layers for the primary

outcome (AKI) and auxiliary heads (laboratory test regressions).
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Figure 4 Deep recurrent architecture: Numerical and presence features are embedded in parallel,
feeding into a multi-task deep recurrent highway network architecture, with shared weights until final lo-
gistic layers for the primary versus auxiliary targets. The network was trained end-to-end including the
embedding modules. Image source: [12].

20. Set up the model optimiser: By comparing the predicted output and the ground truth

labels, compute a scalar loss value for each timestep. Next, compute scalar losses for

each auxiliary task. In [12] the cross-entropy loss function (Bernoulli log-likelihood) was

used for binary outcome prediction, and L1/L2 losses for the auxiliary laboratory test

regressions. Optionally, re-weight the loss to account for skew in the target distribution.

Define a composite loss as a weighted sum of primary and auxiliary losses, plus regulari-

sation losses from the embedding module and model. Use the computed loss alongside a

mini-batch optimization algorithm e.g. stochastic gradient descent, Adam, RMSProp etc.

to iteratively adapt the weights of the neural network. Train using on the training data
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split until convergence. Select the optimal learning regime (learning rate, decay) based on

hyperparameter sweeps (See Step 21).

21. Run an iterative sequence of hyperparameter sweeps: Define hyperparameter sweeps

based on domain knowledge and previous literature. Refer to Table 1 for the ranges of

hyperparameters tested in [12]. Initially perform hyperparameter sweeps without auxiliary

tasks to find a performant set of hyperparameters for the main task; then fine-tune the

hyperparameters from that starting point, while executing sweeps to optimise the weight of

the auxiliary loss. If target performance is not reached, revisit and expand earlier steps on

data pre-processing and architecture selection. In each hyperparameter sweep, formulate a

hypothesis for which architecture changes are likely to lead to performance improvements

based on ML expertise. For example, overfitting is a significant risk, especially when the

feature space is sparse and high dimensional. Mitigating strategies include reducing the

RNN cell size, increasing regularisation, introducing drop-out or increasing the auxiliary

loss weight. For each of the hyperparameter combinations, train a model on the training

split and evaluate on the validation split (see Step 15), optimising for both PR AUC and

ROC AUC. Select the best performing configuration at the end of this process as the final

model architecture at this stage.

22. Perform an ablation study: The purpose of ablation is to minimise model complexity

while preserving performance. Take the final model architecture from the previous step

and define a set of components to remove (i.e. ablate) in order to assess their individual

contributions. For example, this can include the number of stacked layers in the deep

model, additional feature types like the historical aggregates, regularisation techniques,

auxiliary prediction tasks, etc. For each ablation experiment, train a new model on the

training set. Next, evaluate each of the ablated models on the validation set. To test

for statistical significance, train a collection of ablation models, and calculate confidence

intervals on the average performance using bootstrapping (see Step 28). If any of the
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Table 1 Hyperparameter sweeps used for the AKI model.

Hyperparameter Values considered

RNN cell type LSTM, GRU, UGRNN, SRU, Intersection RNN,
MANN, NTM, DNC, RMC

RNN cell size 100, 150, 200, 250, 300, 400, 500
RNN num. layers 1, 2, 3
Embedding num. layers 1, 2, 3
Embedding dim. per feature type 200, 250, 300, 400, 500
Embedding combination concatenate, sum
Embedding architecture type MLP, AE, VAE
Embedding reconstruction loss weight 1e-2, 1e-3, 1e-4
Embedding reconstruction sampling ratio 1, 2, 5, 10
Optimise directly for PR AUC on, off
Highway connections on, off
Residual embedding connections on, off
Input dropout 0, 0.1, 0.2, 0.3
Output dropout 0, 0.1, 0.2, 0.3
Embedding dropout 0, 0.1, 0.2, 0.3
Variational dropout 0, 0.1, 0.2, 0.3
Input regularisation type None, L1, L2
Input regularisation term weight 1e-3, 1e-4, 1e-5
BPTT Window 32, 64, 128, 256, 512
Embedding activation functions Tanh, ReLU [90], Leaky ReLu [91], Swish [92],

ELU [93], SELU [94], ELiSH [95],
Hard ELiSH [95], Sigmoid, Hard Sigmoid

Auxiliary task loss weight 0., 0.1, 0.5, 1, 5, 10
Learning rate 1e-2, 1e-3, 1e-4, 1e-5
Learning rate decay scheduling on, off
Learning rate decay num. steps 6000, 8000, 12000, 15000, 20000
Learning rate decay base 0.7, 0.8, 0.85, 0.9, 0.95
Batch size 32, 64, 128, 256, 512
NTM/DNC memory capacity 64, 128, 256
NTM/DNC memory word size 16, 32, 64
NTM/DNC memory num. reads 6, 10
NTM/DNC memory num. writes 1, 2, 3

ablated models perform at least as well as the more complex final model, modify the

architecture accordingly to favour the simpler version. Repeat this process until the model

can no longer be simplified without significant loss of performance. Ablation results for

AKI can be seen in Supplementary Tables 10 and 11 of [12].

23. Compute feature saliency: Estimating the contribution of individual features can aid in

understanding what the model is learning, and can also be useful for quality assurance

to protect against label leakage and spurious correlations. In this work, we performed

occlusion analysis [96] which estimates a feature’s contribution by evaluating the change

in predicted risk when that feature is individually occluded. The occlusion process is
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similar to replacing a feature by a baseline [97]. A feature was occluded by setting both

its numerical value and associated presence feature to 0, i.e. we define the baseline as

an absent feature. Feature attribution can then be evaluated by averaging the deviation

in predicted risk under occlusion over an interval for a single patient (local saliency) or

over all timesteps for the entire cohort (global saliency). Please note that feature saliency

techniques were not tailored for multivariate heterogeneous time-series and we advise

caution in their use.

24. Failure case analysis: Compute timestep-level and outcome-level metrics for all sub-

jects in the validation set. Compile a set of representative success- and failure-cases (see

Supplementary Material of [12] for example plots). Cases should be evaluated based on

discriminative performance (was the ground-truth associated with this alert accurate?); as

well as actionability (could this alert have impacted the clinical trajectory of this patient?).

Detailed case review can be targeted towards certain clinical subgroups or cohorts where

model performance is poor, in an attempt to tackle the pervasive issue of hidden strati-

fication in model performance (where performance varies in clinically meaningful ways

between patient subsets) [98].

25. Define the final model architecture: Define the resulting model architecture as final

and do not revisit any of the previous steps at this point. Use the fixed set of parameters

corresponding to this model to compute the predictions for all timesteps in all patients for

each data split.

Risk calibration and uncertainty

26. Calibration: A well calibrated risk model is one where the predicted risk matches the

incidence of the outcome of interest (i.e. 40% of patients with a 0.40 risk of AKI in 48h

should develop an AKI in that timeframe). This is critical if a model is to be deployed as a

clinical risk stratification tool. Deep learning models with softmax/sigmoid output trained
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with cross-entropy loss are prone to miscalibration. Recalibration is often necessary to

ensure that consistent probabilistic interpretations of the model predictions can be made

[99]. Use the previously defined calibration set to align the predicted values with the un-

derlying probability of the adverse event occurring at a given timestep. One approach is to

fit an isotonic regression [100] model on the predictions against the target variable. Assess

the quality of the calibration by comparing uncalibrated predictions to recalibrated ones

using Brier score [101] and reliability plots [102] (see Extended Data Figure 3 in [12]).

27. Estimate uncertainty of individual predictions: To quantify the uncertainty of model

predictions (i.e. prediction-level uncertainty), train an ensemble of multiple models with

a fixed set of hyperparameters but different random initial seeds, similar to [103] and

[104]. To get the uncertainty ranges for each prediction, take the set of predictions from

all models and trim the distribution tails depending on the desired level of confidence.

Note that alternative uncertainty estimation methods have been explored in the literature,

including MC-dropout [105] and Bayesian neural networks [106] - the latter of which can

enable efficient patient-level uncertainty estimation via a single model.

28. Estimate performance uncertainty: To gauge uncertainty on a trained model’s perfor-

mance (i.e. performance uncertainty), calculate confidence intervals of performance met-

rics (ROC AUC, PR AUC) using bootstrapping. First, sample patients from a single split

with replacement (for 95% confidence intervals, take 200 records). Next, compute the

pivot bootstrap estimator [107] using resampled values. Uncertainty estimates should be

computed on the validation split during model development and on the test split for final

performance metrics.

29. Clinically-motivated operating points: Performance metrics are dependent on the

choice of an operating point (OP). Choose multiple OPs based on the PR curve of the

final model and report the performance under each [108]. In consultation with clinical

experts, evaluate which operating points are most clinically significant based on the val-
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idation set metrics (e.g. for AKI an OP of two false positives for one true positive was

chosen as being acceptable to assist a nephrology consult team in screening an inpatient

population). Results for multiple OPs are shown in Figure 2 and Extended Data Table 4

in [12]. Note that since OPs are set on the validation split, they may not lie exactly on the

PR curve reflecting test split performance.

Model generalisability evaluation

30. Analyse model performance across subpopulations: Define a set of clinical subpopu-

lations relevant to the outcome of interest, which may include demographic and clinical

characteristics. In [12] subgroups included patients with chronic kidney injury (CKD),

diabetes and medical/surgical admissions. Report the performance including confidence

intervals on each subpopulation. In particular, consider the performance and consequent

resource allocation across protected groups (i.e. subpopulations vulnerable to health dis-

parities) as part of a broader ML fairness evaluation [50], based on the available informa-

tion in the research dataset.

31. Quantify the expected daily alert rate: Chronologically align all the patient timeseries

from the test set. For each day in the longitudinal test set, compute the percentage of

inpatients where the model: a) produced a true positive alert; b) produced a false positive

alert without having provided a true positive alert within a certain prior time window;

and c) did not produce any alerts. Compute the mean daily alert rate across all days

in the longitudinal set. Report this metric to guide the likely resource burden in future

prospective evaluation.

32. Evaluate temporal generalisability on future unseen data: Model performance may

differ in important ways when prospectively deployed due to data drift [109]. To under-

stand this potential risk steps 32 and 33 simulate the generalisability of models to future,

unseen data and to previously unseen hospital sites. Choose a point in time tP such that
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approximately 80% of data entries occur prior to time tP and approximately 20% occur

after time tP . Train a model using the final architecture determined in Step 25 using only

data from prior to time tP in the training split. Note that since hyperparameters were tuned

using data from after tP , this is an approximation and complete re-tuning with the pre-tP

test set would be the most rigorous approach. Generate model predictions for the entire

test split. Generate 95% confidence intervals of PR AUC and ROC AUC for predictions

made prior to tP and for predictions made subsequent to tP . Compare confidence intervals

to determine if model performance on future unseen data is comparable to performance

on historic data.

Figure 5 Evaluating temporal generalisability on future unseen data. Confidence intervals for per-
formance metrics on the test split prior to tP are compared to those on the test split after tP to determine
if performance is preserved on future unseen data. Confidence intervals for performance metrics on the
train split after tP are compared to those on the test split after tP to determine if there is a benefit from
having prior historical data on patients present during model training.

33. Evaluate regional generalisability in simulated cross-site deployments: External vali-

dation, where model performance is computed on a different population/dataset, is a crit-

ical part of model evaluation. If multi-centre data are available, choose a split in hospital
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sites such that approximately 80% of patient admissions occur at sites in group A, and ap-

proximately 20% occur at sites in group B. For single-site data, this split could be done in

other ways, e.g. by ward. Train a model using the final architecture determined in Step 25

using the training split, excluding data entries from admissions at sites in group B (note

the hyperparameter leakage issue in the step above). Run inference to generate model

predictions for the test split. Compare performance metrics with confidence intervals to

determine if model performance for unseen sites is comparable to performance for sites

used during training.

Figure 6 Evaluating regional generalisability in simulated cross-site deployments: Confidence
intervals for performance metrics on test split predictions made during admissions at sites in group A are
compared to those for test split predictions made during admissions at sites in group B to determine if
performance is preserved at sites that were unseen during training.

34. Prospective evaluation: There has been recent commentary around the ‘last-mile’ prob-

lem of machine learning implementation [36, 110]. Robust implementation research, con-

sisting of a staged series of prospective observational and interventional studies, is a crit-

ical part of translating the above model into clinical use [35, 111]. Some of the goals of
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implementation research include (i) defining the technical feasibility of data ingestion and

inference; (ii) evaluating performance on prospective data and defining a model surveil-

lance protocol to tackle issues such as drift; (iii) outcomes analysis on the clinical impacts

of deployment under operational constraints (e.g. using decision curve analysis [112]).

A detailed description of this prospective evaluation phase is outside the scope of this

protocol.

3.1 Generalising protocol to new endpoints

In order to demonstrate that this protocol can be generalised to other tasks and time formula-

tions, we describe below the key steps that were adapted to build predictive models for three

other endpoints: mortality, length of stay and hospital readmission. These endpoints were cho-

sen because the endpoint labels were possible to define in our dataset with reasonable fidelity;

numerous ML performance benchmarks exist in the literature; and they are common operational

focus areas where analytics may deliver value [47]. Furthermore, we demonstrate the perfor-

mance of the architecture across a range of time formulations including varying the lookahead

windows, trigger times and comparing continuous versus static prediction tasks. For each task,

we also compare performance with and without auxiliary tasks.

Adjustments to Step 2 (outcome Labels):

• Inpatient mortality: The mortality label was based on a timestamped mortality flag,

which included both in- and out-of-hospital mortality. To avoid label leakage, the se-

quential representation was masked from the 6h time bucket in which the mortality flag

occurred. The inpatient mortality rate was 2.1%. For a more actionable model, ceilings

of care should likely be factored into model design to avoid evaluation in situations where

the patient has been identified as palliative by the treating team; however for the purposes

of this methodological demonstration we do not explicitly exclude these subjects from

evaluation.
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• Length of stay (LoS): LoS was defined as the remaining length of stay from the trigger

time. The median (interquartile range) LoS across all admissions was 3 (1-7) days with a

mean of 9.7 days due to a number of very long inpatient admissions. Experiments were

set up as binary classification tasks, predicting remaining LoS ≤ 2 or ≤ 7 days. Previous

work has defined prolonged LoS prediction as total LoS above 7 days [14]; however for

the purposes of showing multiple time formulations with a consistent lookahead window,

we have chosen remaining LoS. To avoid label leakage, evaluation was not performed

in the final time bucket of an admission. As Brock et al. suggest, LoS should likely be

modelled using time-to-event analysis with mortality treated as a competing risk [113].

However, for the purposes of demonstrating architecture generalisability and comparing

against literature benchmarks for LoS prediction, we model LoS independently here.

• 30-day readmission: Readmission was defined as any inpatient admission to a VA facility

within 30 days of hospital discharge. The percentage of discharged patients readmitted

within this time window was 18.6%. Note that we do not factor in outpatient mortality

events here.

Adjustments to Step 5 (time formulations):

To demonstrate versatility of the architecture to time formulations, the mortality and LoS tasks

were set up as both continuous predictions (triggered every 6h) and static predictions (triggered

at 24h or 48h after admission). Readmission was only modelled as a static task at the time of

discharge. For static experiments, it is possible to train as a continuous task but only evaluate

the model at a single time point (thereby converting it to a static task); however performance

was found to be higher if both trained and evaluated statically. Regarding lookahead windows,

mortality models were trained using the following intervals: 2, 7, 30, 90 days as well as a

variable lookahead for in-hospital mortality. Remaining LoS was modelled based on 2 and 7

day cutoffs; readmission used a 30-day lookahead from the time of discharge.
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Adjustments to Step 6 (auxiliary tasks):

For the mortality and LoS tasks, a panel of 14 laboratory tests was identified (extending on the

7 auxiliaries used for AKI, but within the scope of the available de-identified laboratory val-

ues): haemoglobin, white blood cell count, platelets, C reactive protein (CRP), international

normalised ratio (INR), serum protein, albumin, glucose, creatinine, urea nitrogen, potassium,

sodium, chloride and pH. We swept across multiple auxiliary configurations, varying the combi-

nation of aggregating functions (maximum, minimum, mean, standard deviation) and the com-

bination of lookahead horizons (ranging from 6-72h). In all cases, auxiliary regressions were

combined to give a single loss. Where a particular lab value was not measured, the loss was set

to zero. For consistency, the setup of auxiliary tasks was kept constant for all time formulations

of mortality and LoS, although auxiliary lookaheads could readily be customised. The intuition

for keeping 48h was to capture the pattern of daily physiological trends for that patient even

when modelling much longer term clinical outcomes (e.g. 30 day mortality). No auxiliaries

were used for the 30-day readmission task as this was triggered only at the time of discharge.

Adjustments to Step 21 (hyperparameter sweeps):

Continuous mortality in admission without auxiliaries, static mortality without auxiliaries, and

static mortality with auxiliaries used an initial learning rate of 0.0001. All other tasks used an

initial learning rate of 0.001. Learning rate was decayed every 12,000 steps by a factor of 0.85,

with batch size of 128 and back-propagation through time window of 128. Lookup embedding

size varied from 200 to 400 depending on the task, with constant embedding layers of size 400

each for numerical and presence features. The RNN consisted of a 3-layer stacked LSTM with

highway connections and cell size 300.
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4 Anticipated results

Detailed results for various formulations of the AKI task are provided in [12]. Here we present

new results for additional endpoints: mortality, length of stay and 30-day readmission (Tables 2

and 3).

For the continuous mortality prediction, PR AUC for the RNN with auxiliary tasks ranged

from 38.3% for a 48 hour lookahead window to 73.8% for 90-day mortality, with ROC AUC

of 98.6% and 95.6% respectively. These results compare favourably to literature benchmarks

for mortality prediction, although performance comparisons are difficult across datasets and ex-

perimental formulations. A recent literature review of ML models in intensive care identified

70 papers predicting mortality [114]; however only a small subset of these used deep learning

approaches and even fewer were designed for continuous predictions. Table A1 provides a sum-

mary of selected ML papers predicting inpatient mortality. Harutyunyan et al. [32] is one of

the only studies to show results for continuous mortality predictions, specifically hourly predic-

tion of mortality within 24 hours (which the authors refer to as ‘physiologic decompensation’),

showing PR AUC of 31.7% and ROC AUC of 90.5% on a dataset with significantly higher in-

hospital mortality rate than the VA dataset (10.5% in their cohort from the Medical Information

Mart for Intensive Care (MIMIC-III) dataset [115], versus 2.1% in the VA dataset). In a related

experiment, Johnson et al. [116] simulated a real-time/continuous prediction task by training a

gradient boosting model on MIMIC-III to predict in-hospital mortality at a random timepoint,

with PR AUC 66.5% and ROC AUC 92.0%. More literature benchmarks exist for static for-

mulations - most commonly, prediction of in-hospital mortality at 24h and 48h post admission.

Our performance exceeds that reported on MIMIC-III structured data by [32, 67, 116]; however

not the results reported by Puroshotham et al. on a feature set of 135 raw features using a mul-

timodal RNN (PR AUC 78.6%, ROC AUC 94.1% for in-hospital mortality at 24h). A recent

study by Brajer et al. prospectively and externally validated a model for predicting in-hospital

mortality at the time of admission, with PR AUC and ROC AUC of 29%, 87% respectively on
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retrospective validation and 14%, 86% on prospective validation [117].

Performance for remaining length of stay (PR AUC 93.3%, ROC AUC 84.3% for LoS <7

days at 24h post admission) and 30-day readmission (PR AUC 50.1%, ROC AUC 80.8%) also

compare favourably to literature benchmarks - with Rajkomar et al. reporting ROC AUC of

up to 86% for predicting total LoS >7 days at 24h post admission; and ROC AUC 77% for

30-day readmission by training over both structured data and notes [14]. Jamei et al. used an

MLP to predict all-cause 30-day hospital readmission, and showed ROC AUC of 78% [118];

while Hilton et al. reported PR AUC and ROC AUC 38.3% and 75.8% respectively on 30-day

readmission with a comparable outcome prevalence to our dataset of 14.2% [119].

We observe a modest performance uplift from the addition of auxiliary tasks, with static for-

mulations for mortality and length of stay showing a 1-2% increase in mean PR AUC with

preserved or increased ROC AUC. For continuous formulations, the performance uplift from

auxiliaries was consistent but small (0-1% PR AUC gain) versus the 3.1% PR AUC uplift for

the AKI task observed in [12]. It may be that a different panel of auxiliary endpoints, more

closely tied to the primary outcome, would have led to a greater performance boost. Flexible

approaches to automatically identify the optimal set of auxiliary tasks are beginning to emerge

but are beyond the scope of this study [120].

Across all tasks and time formulations, the deep learning models trained using the above pro-

tocol outperformed baseline models (logistic regression and XGBoost). It has been suggested

that performance on these canonical tasks saturates with simpler models [67]. These results

suggest that there can still be significant gains in discriminative performance from deep archi-

tectures, however the marginal benefit may be higher for more complex clinical predictions.

More detailed results are provided for the model continuously predicting mortality in 48h.

Figure 7 shows PR and ROC curves for the mortality in 48 hours model, annotated with multiple

OPs (Step 29) for which the performance is further detailed in Table 4. At an operating point

of 33% (one true positive to two false positives), 71.2% of deaths were predicted early within a

window of up to 48h in advance (episode-level sensitivity). The shortcoming of episode-level
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Table 2 Continuous tasks: Model performance for continuous (i.e. regularly triggered) prediction tasks
with variable lookahead windows. A comparison is made between two baseline models (logistic regression
and XGBoost) and the deep recurrent architecture with and without auxiliary tasks. Outcome prevalence
is the percentage of the positive class in the test set (timestep-level prevalence).

Task Triggering Timestep prevalence Model PR AUC [95% CI] ROC AUC [95% CI]

Mortality in 48h 6hrly 0.42% LR 11.2% [10.6, 11.8] 91.1% [90.7, 91.4]
XGBoost 17.2% [16.2, 18.2] 94.1% [93.9, 94.3]
RNN 37.4% [36.4, 38.3] 98.6% [98.5, 98.7]
RNN with auxiliaries 38.3% [37.4, 39.5] 98.6% [98.6, 98.7]

Mortality in 7 days 6hrly 1.46% LR 19.7% [18.9, 20.5] 89.5% [89.2, 89.9]
XGBoost 25.9% [25.0, 26.9] 92.4% [92.1, 92.7]
RNN 52.0% [51.1, 53.1] 97.9% [97.8, 98.0]
RNN with auxiliaries 52.8% [51.8, 53.9] 98.0% [97.9, 98.1]

Mortality in 30 days 6hrly 4.7% LR 32.5% [31.5, 33.5] 87.5% [87.1, 87.8]
XGBoost 38.1% [37.1, 39.2] 90.0% [89.7, 90.7]
RNN 66.8% [65.9, 67.9] 96.8% [96.6, 96.9]
RNN with auxiliaries 67.7% [66.6, 68.8] 96.9% [96.7, 97.0]

Mortality in 90 days 6hrly 9.0% LR 41.5% [40.6, 42.4] 85.9% [85.5, 86.4]
XGBoost 47.1% [46.0, 48.2] 88.3% [88.0, 88.7]
RNN 73.5% [72.6, 74.6] 95.5% [95.3, 95.7]
RNN with auxiliaries 73.8% [72.6, 74.7] 95.6% [95.3, 95.8]

Mortality in admission 6hrly 4.9% LR 27.5% [25.5, 29.1] 86.2% [85.2, 87.4]
XGBoost 30.3% [28.2, 32.2] 87.3% [85.5, 89.1]
RNN 63.5% [59.0, 67.0] 95.8% [94.8, 96.9]
RNN with auxiliaries 64.5% [60.0, 68.8] 93.2% [89.7, 97.0]

Remaining LoS <= 2 days 6hrly 19.9% LR 44.1% [43.8, 44.4] 78.7% [78.4, 79.0]
XGBoost 50.5% [50.3, 50.8] 81.5% [81.2, 81.7]
RNN 69.3% [69.1, 69.5] 90.0% [89.8, 90.1]
RNN with auxiliaries 70.0% [69.8, 70.2] 90.2% [90.0, 90.3]

Remaining LoS <= 7 days 6hrly 40.7% LR 73.4% [73.0, 73.7] 81.2% [80.9, 81.4]
XGBoost 76.8% [76.5, 77.1] 83.2% [82.9, 83.4]
RNN 86.2% [86.0, 86.4] 90.2% [90.0, 90.4]
RNN with auxiliaries 86.4% [86.2, 86.6] 90.3% [90.1, 90.5]

sensitivity is that it does not account for the timeliness of predictions. To better visualize this,

Figure 8 shows early prediction histograms for various OPs, demonstrating that performance is

highest closest to the time of event.

Further research would be required to prepare this model for clinical deployment and evaluate

it prospectively. Deep learning models for 1-year mortality have been used to guide palliative

care referrals and end of life planning [19]. Acute mortality prediction may have utility in

directing life-saving interventions, dovetailing with track-and-trigger systems such as NEWS2

and MEWS which have shown to improve outcomes when integrated with digital alerting sys-

tems [121]. Further prospective studies are required to evaluate whether ML models for acute
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Table 3 Static tasks: Model performance for static prediction tasks (i.e. triggered at a fixed point post
admission). A comparison is made between two baseline models (logistic regression and XGBoost) and
the deep recurrent architecture with and without auxiliary tasks. Outcome prevalence is the percentage of
the positive class in the test set.

Task Trigger time Outcome prevalence Model PR AUC [95% CI] ROC AUC [95% CI]

Mortality in admission 24h post admission 2.0% LR 32.7% [31.4, 34.1] 94.1% [93.8, 94.3]
XGBoost 40.8% [39.1, 42.5] 95.7% [95.5, 95.8]
RNN 55.0% [53.4, 56.3] 97.6% [97.4, 97.7]
RNN with auxiliaries 56.7% [55.3, 58.4] 97.8% [97.7, 98.0]

Mortality in admission 48h post admission 2.7% LR 23.9% [22.6, 25.0] 88.1% [87.7, 88.5]
XGBoost 31.1% [29.8, 32.5] 91.2% [90.9, 91.5]
RNN 58.6% [56.9, 60.1] 97.2% [97.1, 97.4]
RNN with auxiliaries 60.8% [59.2, 62.2] 97.5% [97.4, 97.7]

Remaining LoS <= 2 days 24h post admission 47.5% LR 55.3% [54.9, 55.8] 69.1% [68.8, 69.4]
XGBoost 59.5% [59.1, 59.9] 72.9% [72.6, 73.1]
RNN 73.9% [73.5, 74.3] 82.0% [81.8, 82.2]
RNN with auxiliaries 74.7% [74.4, 75.0] 82.6% [82.4, 82.7]

Remaining LoS <= 2 days 48h post admission 38.9% LR 50.5% [50.0, 50.9] 67.2% [66.9, 67.5]
XGBoost 55.9% [55.4, 56.4] 71.9% [71.6, 72.2]
RNN 71.4% [70.9, 71.7] 81.3% [81.0, 81.5]
RNN with auxiliaries 72.1% [71.7, 72.5] 81.9% [81.6, 82.1]

Remaining LoS <= 7 days 24h post admission 78.1% LR 86.4% [86.1, 86.6] 72.2% [71.8, 72.5]
XGBoost 88.4% [88.2, 88.6] 75.8% [75.6, 76.1]
RNN 93.1% [92.9, 93.2] 83.9% [83.7, 84.1]
RNN with auxiliaries 93.3% [93.2, 93.5] 84.3% [84.1, 84.5]

Remaining LoS <= 7 days 48h post admission 72.0% LR 83.1% [82.8, 83.5] 70.8% [70.4, 71.2]
XGBoost 85.7% [85.4, 86] 74.8% [74.5, 75.1]
RNN 91.7% [91.5, 91.8] 83.4% [83.2, 83.7]
RNN with auxiliaries 91.9% [91.7, 92.1] 83.8% [83.6, 84.1]

Readmission in 30 days Discharge 18.7% LR 30.2% [29.6, 30.7] 65.4% [65.0, 65.8]
XGBoost 32.4% [31.8, 33.0 67.1% [66.8, 67.4]
RNN 50.1% [49.1, 50.9] 80.8% [80.5, 81.1]

mortality prediction improve clinical outcomes when deployed, extending on prospective vali-

dation studies such as Brajer et al.[117]. It is important to note that mortality risk models may

have unintended consequences if actively deployed in real-world settings, including pathologi-

cal prediction cycles [122]. For example, a model may suggest removal of care for patients with

a high mortality risk in turn providing confirmatory training data for the original risk. We em-

phasise that any live deployment of a mortality prediction model must undergo thorough ethical

review and multiple stages of user-experience research and safety evaluation.
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5 Conclusions

This protocol offers a versatile framework to develop deep learning prototypes for a range of

clinical and operational use cases. The components of this protocol with greatest novelty in-

clude multi-tasking with physiological auxiliaries (Step 6); separate training and evaluation

masks (Step 16); architecture ablation (Step 22); calibration and uncertainty estimation (Steps

26-28); clinically-motivated operating points (Step 29); and temporal/regional generalisability

evaluations (Steps 32-33). It is critical that clinicians, informaticians and engineers are involved

in an interdisciplinary team implementing this protocol. Further work is required in identifying

appropriate clinical use cases and deploying the models in real-world settings via prospective

implementation research. To support this next phase of translational research, the community

must grapple with issues such as model safety, robustness and demographic biases in order to

deliver meaningful clinical impact [40].
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Table 4 Operating points for mortality in 48h model: Percentage of mortality events detected up to
48h ahead of time at varying true positive (TP) to false positive (FP) operating points.

Precision TP:FP ratio Sensitivity

20% 1:4 84.2%
25% 1:3 79.1%
33% 1:2 71.2%
40% 2:3 62.4%
50% 1:1 51.7%
60% 3:2 40.7%
66% 2:1 35.1%
75% 3:1 28.2%
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Figure 7 Continuous prediction of mortality in 48h: Receiver operating characteristic (a) and preci-
sion–recall (b) curves for the risk of mortality in 48 hours. Blue dots represent different model operating
points on the validation set.
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Figure 8 Early prediction histogram for mortality in 48h: Model performance at timesteps prior to
mortality. Error bars show bootstrap pivotal 95% confidence intervals; n = 200). The boxed area shows
the upper limit on possible predictions for each time window.



Table A1 Related works: Selected machine learning models for prediction of inpatient mortality. Where available, the inpatient mortality rate of
the dataset is shown. Note MIMIC-III has different rates due to different subsets being used. Triggering tim refers to hours after admission when
inference in triggered. 95% confidence intervals of performance are shown in brackets where available. GBM, Gradient BoostingMachine; GRU,
Gated Recurrent Unit; GRU-D, Gated Recurrent Unit with Delay; FFNN, Feed Forward Neural Network; LSTM, Long Short Term Memory network;
RNN, recurrent neural network.

Paper Dataset (mortality rate) No. of input features Primary model Triggering Outcome ROC AUC [95% CI] PR AUC [95% CI]
Nakas et al. (2016) [123] Inselspital Bern (2.4%) 23 Decision trees, FFNN Static, at admission In-hospital mortality 0.912
Johnson et al. (2017) [116] MIMIC-III 148 GBM Static, 24h In-hospital mortality 0.927

Random timepoint 0.920 0.665
Aczon et al. (2017) [124] CHLA paediatric ICU (4.9%) 300 RNN (LSTM) Static, 12h In-hospital mortality 0.934
Che et al. (2018) [125] MIMIC-III (8.7%) 99 RNN (GRU-D) Static, 48h In-hospital mortality 0.853
Purushotham et al. (2018) [49] MIMIC-III (10.5%) 20 RNN (FFNN, GRU ensemble) Static, 24h In-hospital mortality 0.873 0.477

MIMIC-III (10.5%) 135 Static, 48h 0.941 0.786
Rajkomar et al. (2018) [14] Hospital A (2.1%) Full FHIR embedding RNN (ensemble LSTM) Static, 24h In-hospital mortality 0.95 [0.94-0.96]

Hospital B (2.5%) Static, 24h 0.93 [0.92-0.94]
Wang et al. (2019) [67] MIMIC-III 103 RNN (GRU-D) Static, 24h In-hospital mortality 0.876 0.532
Caicedo-Torres et al. (2019) [126] MIMIC-III (9.7%) 22 CNN Static, 24h In-hospital mortality 0.822

Static, 48h 0.874
Mayampurath et al. (2019) [127] U Chicago (2.5%) 156 CNN + recurrent layer Static, 48h In-hospital mortality 0.91 [0.90-0.92]
Harutyunyan et al. (2019) [32] MIMIC-III (13.2%) 17 RNN (multitask channel-wise LSTM) Static, 24h In-hospital mortality 0.870 [0.852-0.887] 0.533 [0.480-0.584]

Continuous, 1-hourly Mortality in 24h 0.905 [0.902-0.908] 0.317 [0.307-0.328]
Shickel et al. (2019) [34] U Florida ICU (10.4%) 14 RNN (GRU) Static, 24h In-hospital mortality 0.89 [0.88-0.90]

Static, 48h 0.91 [0.90-0.91]
MIMIC-III (10.8%) 14 Static, 24h 0.90 [0.89-0.90]

Static, 48h 0.91 [0.91-0.92]
Fritz et al. (2019) [128] Barnes-Jewish intra-operative (1%) 56 Multi-path CNN Randomly selected 1h interval 30-day mortality 0.867 [0.835–0.899] 0.095 [0.085-0.109]
Xia et al. (2019) [129] MIMIC-III (11.7%) 50 RNN (ensemble LSTM) Continuous, daily 28-day mortality 0.85 0.45
Nielsen et al. (2019) [130] Danish ICU disease registry (33.4%) 44 FFNN Static, 24h In-hospital mortality 0.792
Brajer et al. (2020) [117] Duke (3.0%) 195 GBM Static, at admission In-hospital mortality 0.87 [0.83-0.89] 0.29 [0.25-0.37]
Hilton et al. (2020) [119] Cleveland Clinic (1.4%) 171 GBM Static, 24h Mortality within 48-72h 0.91
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CNN Convolutional Neural Network
DNC Differentiable Neural Computer
EHR Electronic Health Record
FHIR Fast Healthcare Interoperability Resources
FFNN Feed Forward Neural Network
GBM Gradient Boosting Machines
GRU Gated Recurrent Unit
ICD-9 International Statistical Classification of Diseases and Related Health Problems
ICU Intensive Care Unit
KDIGO Kidney Disease: Improving Global Outcomes guidelines
LoS Length of stay
LR Logistic Regression
LSTM Long Short-Term Memory Network
MANN Memory-Augmented Neural Network
MLP Multilayer Perceptron
NTM Neural Turing Machine
PR Precision/Recall
ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network
RMC Relational Memory Core
ROC Receiver Operating Characteristic
RRT Renal Replacement Therapy
SRU Simple Recurrent Unit
UGRNN Update Gate Recurrent Neural Network
VA US Department of Veterans Affairs
VAE Variational Autoencoder
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