61 research outputs found
Diffusion in pores and its dependence on boundary conditions
We study the influence of the boundary conditions at the solid liquid
interface on diffusion in a confined fluid. Using an hydrodynamic approach, we
compute numerical estimates for the diffusion of a particle confined between
two planes. Partial slip is shown to significantly influence the diffusion
coefficient near a wall. Analytical expressions are derived in the low and high
confinement limits, and are in good agreement with numerical results. These
calculations indicate that diffusion of tagged particles could be used as a
sensitive probe of the solid-liquid boundary conditions.Comment: soumis \`a J.Phys. Cond. Matt. special issue on "Diffusion in
Liquids, Polymers, Biophysics and Chemical Dynamics
Differential Metabolisms of Green Leaf Volatiles in Injured and Intact Parts of a Wounded Leaf Meet Distinct Ecophysiological Requirements
Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant kingdom. The major product in completely disrupted Arabidopsis leaf tissues was (Z)-3-hexenal, while (Z)-3-hexenol and (Z)-3-hexenyl acetate were the main products formed in the intact parts of partially wounded leaves. 13C-labeled C6 aldehydes placed on the disrupted part of a wounded leaf diffused into neighboring intact tissues and were reduced to C6 alcohols. The reduction of the aldehydes to alcohols was catalyzed by an NADPH-dependent reductase. When NADPH was supplemented to disrupted tissues, C6 aldehydes were reduced to C6 alcohols, indicating that C6 aldehydes accumulated because of insufficient NADPH. When the leaves were exposed to higher doses of C6 aldehydes, however, a substantial fraction of C6 aldehydes persisted in the leaves and damaged them, indicating potential toxicity of C6 aldehydes to the leaf cells. Thus, the production of C6 aldehydes and their differential metabolisms in wounded leaves has dual benefits. In disrupted tissues, C6 aldehydes and their α,β-unsaturated aldehyde derivatives accumulate to deter invaders. In intact cells, the aldehydes are reduced to minimize self-toxicity and allow healthy cells to survive. The metabolism of GLVs is thus efficiently designed to meet ecophysiological requirements of the microenvironments within a wounded leaf
Phenotyping progenies for complex architectural traits: a strategy for 1-year-old apple trees (Malus x domestica Borkh.)
International audienceThe aim of this study was to define a methodology for describing architectural traits in a quantitative way on tree descendants. Our strategy was to collect traits related to both tree structural organization, resulting from growth and branching, and tree form and then to select among these traits relevant descriptors on the basis of their genetic parameters. Because the complexity of tree architecture increases with tree age, we chose to describe the trees in the early stages of development. The study was carried out on a 1-year-old apple progeny derived from two parent cultivars with contrasted architecture. A large number of variables were collected at different positions and scales within the trees. Broad-sense heritability and genetic correlations were estimated and the within tree variability was analyzed for variables measured on long sylleptic axillary shoots (LSAS). These results were combined to select heritable and not correlated variables. Finally, the selection of variables proposed combines topological with geometric traits measured on both trunks and LSAS: (1) on the trunk, mean internode length, and number of sylleptic axillary shoots; (2) on axillary shoots, conicity, bending, and number of sylleptic axillary shoots born at order 3. The trees of the progeny were partitioned on the basis of these variables. The putative agronomic interest of the selected variables with respect to the subsequent tree development is discussed
Hypersensitive Response-Like Reaction Is Associated with Hybrid Necrosis in Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii Coss
BACKGROUND: Hybrid speciation is classified into homoploid and polyploid based on ploidy level. Common wheat is an allohexaploid species that originated from a naturally occurring interploidy cross between tetraploid wheat and diploid wild wheat Aegilops tauschii Coss. Aegilops tauschii provides wide naturally occurring genetic variation. Sometimes its triploid hybrids with tetraploid wheat show the following four types of hybrid growth abnormalities: types II and III hybrid necrosis, hybrid chlorosis, and severe growth abortion. The growth abnormalities in the triploid hybrids could act as postzygotic hybridization barriers to prevent formation of hexaploid wheat. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report on the geographical and phylogenetic distribution of Ae. tauschii accessions inducing the hybrid growth abnormalities and showed that they are widely distributed across growth habitats in Ae. tauschii. Molecular and cytological characterization of the type III necrosis phenotype was performed. The hybrid abnormality causing accessions were widely distributed across growth habitats in Ae. tauschii. Transcriptome analysis showed that a number of defense-related genes such as pathogenesis-related genes were highly up-regulated in the type III necrosis lines. Transmission electron microscope observation revealed that cell death occurred accompanied by generation of reactive oxygen species in leaves undergoing type III necrosis. The reduction of photosynthetic activity occurred prior to the appearance of necrotic symptoms on the leaves exhibiting hybrid necrosis. CONCLUSIONS/SIGNIFICANCE: Taking these results together strongly suggests that an autoimmune response might be triggered by intergenomic incompatibility between the tetraploid wheat and Ae. tauschii genomes in type III necrosis, and that genetically programmed cell death could be regarded as a hypersensitive response-like cell death similar to that observed in Arabidopsis intraspecific and Nicotiana interspecific hybrids. Only Ae. tauschii accessions without such inhibiting factors could be candidates for the D-genome donor for the present hexaploid wheat
Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach
<p>Abstract</p> <p>Background</p> <p>Over its life cycle, the <it>Plasmodium falciparum </it>parasite is exposed to different environmental conditions, particularly to variations in O<sub>2 </sub>pressure. For example, the parasite circulates in human venous blood at 5% O<sub>2 </sub>pressure and in arterial blood, particularly in the lungs, at 13% O<sub>2 </sub>pressure. Moreover, the parasite is exposed to 21% O<sub>2 </sub>levels in the salivary glands of mosquitoes.</p> <p>Methods</p> <p>To study the metabolic adaptation of <it>P. falciparum </it>to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.</p> <p>Results</p> <p>Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.</p> <p>Conclusions</p> <p>These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of <it>P. falciparum</it>. This study provides a better understanding of the adaptive capabilities of <it>P. falciparum </it>to environmental changes and may lead to the development of novel therapeutic targets.</p
Modelling, Evaluation and Biomechanical Consequences of Growth Stress Profiles Inside Tree Stems
International audienceThe diameter growth of trees occurs by the progressive deposition of new wood layers at the stem periphery. These wood layers are submitted to at least two kinds of mechanical loads: maturation stress induced in wood during its formation , and the effect of the increasing self-weight. Interaction between growth and these loads causes mechanical stress with a particular distribution within the stem, called growth stresses. Growth stresses have technical consequences, such as cracks and deformations of lumber occurring during sawing, and biological consequences through their effect on stem strength. The first model for computing the field of stress inside a growing stem was set long ago by Kübler. Here, we extend these analytical formulations to cases with heterogeneous wood properties, eccentricity and bending stresses. Simulated profiles show reasonable agreement with measured profiles of released strains in logs. The particular shape of these profiles has consequences on stem bending strength. During bending in response to transient loads such as wind, most of the load is supported by outer parts of a stem cross section. The tensile maturation stress at this level increases the bending strength of the stem by delaying compression failure. Compressive stress in reaction to this tension does not reduce the bending strength because it is located near the centre of the stem and thus not loaded during bending, except if growth is strongly eccentric. Permanent bending stresses are concentrated at the mid-radius of the section, so that they do not cumulate with above-mentioned sources of stress. This smart distribution of stresses makes it possible that the stem is stronger than the wood it is made of, and that a growing stem can bend considerably more than its non-growing beam equivalent without breaking
- …