644 research outputs found

    New Onset Bilateral Pleural Effusion: An Uncommon Presentation of Subclinical Hypothyroidism or a Premature Closure Diagnosis Error?

    Get PDF
    Background: Subclinical hypothyroidism is biochemically defined with normal serum-free T4 in the presence of an elevated serum TSH. Common symptoms of an underactive thyroid can include fatigue, weakness, cold intolerance, weight gain despite poor appetite, hair loss, constipation, and depression. Pleural effusions have also been recognized as a clinical sequelae in the literature, where up to 25% of patients can develop a pleural fluid collection in the setting of hypothyroidism. Although not well understood, a mechanism includes an increased capillary permeability that leads to the retention of fluid in pleural cavities and other tissues. Case presenting: A 66-year-old woman with PMH of hypertension and Type 2 DM presented to the hospital complaining of acute progressive shortness of breath (SOB) for the past two days. She reported the SOB began suddenly, was constant, and was exacerbated by movement and supine positioning. At previous baseline, she was fully functional and independent. She complained of recent weight gain, constipation, dry skin, and lower extremity swelling, but denied subjective fevers, cough, chest pain, and palpitations. Upon admission, she was in respiratory distress requiring oxygen supplementation via nasal cannula. Physical exam revealed reduced breath sounds and dullness to percussion at the lung bases and 2+ pitting edema in the lower extremities. She was afebrile with no leukocytosis. CXR reported moderate bilateral pleural effusions, with CTA confirmation ruling out PE. BNP, liver function tests, urine studies, albumin, and autoimmune workup was negative.The echocardiogram indicated normal right and left heart function and an elevated pulmonary artery systolic pressure of 57 mmHg. Thyroid function tests reported normal T4 level, mild low T3, and elevated TSH. Intravenous furosemide was initiated with rapid response and improvement. Attempted thoracentesis was unsuccessful in obtaining pleural fluid for analysis. Levothyroxine was initiated, and after two days of treatment, the patient demonstrated significant improvement in SOB, with an SpO2 99% on room air and resolution of edema. Follow-up CXR and CT revealed diminished pleural effusions and the patient was discharged without the need for oxygen supplementation. However, the patient returned to the hospital with the same complaint of SOB with bilateral pleural effusion three weeks after the first admission. On this admission, she underwent prompt thoracentesis, and 750 cc of yellow fluid was collected and submitted for fluid analysis. Fluid results were consistent with transudative pleural fluid and lymphocyte-predominant cells. These results and recurrent presentation, despite treatment of hypothyroidism, suggest that there may be an underlying etiology that still needs to be identified and treated. Conclusion: Subclinical hypothyroidism should be considered as a potential cause of bilateral pleural effusions when other potential causes have been ruled out, such as heart failure, liver and kidney dysfunction, and nephrotic syndrome. When this diagnosis is confirmed, treatment with levothyroxine and antidiuretics is recommended. However, this case demonstrates that early diagnostic closure can result in readmission for the same initial complaint of SOB from pleural effusion reaccumulation. Therefore, it’s crucial to maintain a broad differential diagnosis when investigating the underlying etiologies of persistent or worsening clinical complaints

    On the Secondary Eyewall Formation of Hurricane Edouard (2014)

    Get PDF
    A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administrations (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period

    Inclusion of Host Quality Data Improves Predictions of Herbivore Phenology

    Get PDF
    Understanding the correspondence between ambient temperature and insect development is necessary to forecast insect phenology under novel environments. In the face of climate change, both conservation and pest control efforts require accurate phenological predictions. Here, we compare a suite of degree-day models to assess their ability to predict the phenology of a common, oligophagous butterfly, the silver-spotted skipper, Epargyreus clarus (Cramer) (Lepidoptera: Hesperiidae). To estimate model parameters, we used development time of eggs and larvae reared in the laboratory at six constant temperatures ranging from 8 to 38 °C and on two host plants of contrasting quality (kudzu and wisteria). We employed three approaches to determine the base temperature to calculate degree days: linear regression, modified reduced major axis regression, and application of a generic base temperature value of 10 °C, which is commonly used in the absence of laboratory data. To calculate the number of degree days required to complete a developmental stage, we used data from caterpillars feeding on high- and low-quality hosts, both in the field and in the laboratory. To test model accuracy, we predicted development time of seven generations of larvae reared in the field on the same host plants across 3 years (2014–2016). To compare performance among models, we regressed predicted vs. observed development time, and found that r2 values were significantly larger when accounting for host plant quality. The accuracy of development time predictions varied across the season, with estimates of the first two generations being more accurate than estimates of the third generation, when ambient temperatures dropped outside the range in which development rate and temperature have a linear relationship. Overall, we show that accounting for variation in host plant quality when calculating development time in the field is more important than the choice of the base temperature for calculating degree days

    Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Computer Mathematics in 2014, available online: http://www.tandfonline.com/10.1080/00207160.2013.799668Resolution of the steady-state Neutron Transport Equation in a nuclear pool reactor is usually achieved by means of two different numerical methods: Monte Carlo (stochastic) and Discrete Ordinates (deterministic). The Discrete Ordinates method solves the Neutron Transport Equation for a set of selected directions, obtaining a set of directional equations and solutions for each equation which are the angular flux. In order to deal with the energy dependence, an energy multi-group approximation is commonly performed, obtaining a set of equations depending on the number of energy groups. In addition, spatial discretization is also required and the problem is solved by sweeping the geometry mesh. However, special cross-sections are required due to the energy and directional discretization, thus a methodology based on NJOY99 code capabilities has been used. Finally, in order to demonstrate the capability of this method, the 3D discrete ordinates code TORT has been applied to resolve the IPEN/MB-01 reactor.The authors wish to thank Departamento de Engenharia Nuclear da UFMG and Instituto de Pesquisas Energeticas e Nucleares for all data and support.Bernal García, Á.; Abarca Giménez, A.; Barrachina Celda, TM.; Miró Herrero, R. (2014). Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor. International Journal of Computer Mathematics. 91(1):113-123. doi:10.1080/00207160.2013.799668S113123911Rhoades, W. A., & Simpson, D. B. (1997). The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3). doi:10.2172/58226

    Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    Get PDF
    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al

    Hierarchy of Lifshitz transitions in the surface electronic structure of Sr2RuO4 under uniaxial compression

    Get PDF
    Funding: We gratefully acknowledge support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 and EP/R031924/1), the European Research Council (through the QUESTDO project, 714193), and the Leverhulme Trust (Grant No. RL-2016-006). E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. N.K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grant Nos.18K04715, and 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). APM and CWH acknowledge support from the Deutsche Forschungsgemeinschaft - TRR 435 288 - 422213477 (project A10). We thank Diamond Light Source for access to Beamline I05 (Proposals SI27471 and SI28412), which contributed to the results presented here.We report the evolution of the electronic structure at the surface of the layered perovskiteSr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of εxx − εyy = −0.9 ± 0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr2RuO4 surface.PostprintPeer reviewe

    Orbital-selective band hybridisation at the charge density wave transition in monolayer TiTe2

    Get PDF
    Funding: We gratefully acknowledge support from the Leverhulme Trust and the Royal Society. W.R. is grateful to University College London for awarding a Graduate Research Scholarship and an Overseas Research Scholarship. O.J.C. and K.U. acknowledge PhD studentship support from the UK Engineering and Physical Sciences Research Council (EPSRC, Grant Nos. EP/K503162/1 and EP/L015110/1). I.M. and E.A.-M. acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. S.R.K. acknowledges the EPSRC Centre for Doctoral Training in the Advanced Characterisation of Materials (CDT-ACM, EP/S023259/1) for funding a PhD studentship.Reducing the thickness of a material to its two dimensional (2D) limit can have dramatic consequences for its collective electronic states, including magnetism, superconductivity, and charge and spin ordering. An extreme case is TiTe2, where a charge density wave (CDW) emerges in the single-layer which is absent for the bulk compound, and whose origin is still poorly understood. Here, we investigate the electronic band structure evolution across this CDW transition using temperature-dependent angle-resolved photoemission spectroscopy. Our study reveals an orbital-selective band hybridisation between the backfolded conduction and valence bands occurring at the CDW phase transition, which in turn leads to a significant electronic energy gain, underpinning the CDW transition. For the bulk compound, we show how this energy gain is almost completely suppressed due to the three-dimensionality of the electronic band structure, including via a kz-dependent band inversion which switches the orbital character of the valence states. Our study thus sheds new light on how control of the electronic dimensionality can be used to trigger the emergence of new collective states in 2D materials.Publisher PDFPeer reviewe
    corecore