386 research outputs found

    New strategies for a sustainable 99mTc supply to meet increasing medical demands: Promising solutions for current problems.

    Get PDF
    The continuing rapid expansion of 99mTc diagnostic agents always calls for scaling up 99mTc production to cover increasing clinical demand. Nevertheless, 99mTc availability depends mainly on the fission-produced 99Mo supply. This supply is seriously influenced during renewed emergency periods, such as the past 99Mo production crisis or the current COVID-19 pandemic. Consequently, these interruptions have promoted the need for 99mTc production through alternative strategies capable of providing clinical-grade 99mTc with high purity. In the light of this context, this review illustrates diverse production routes that either have commercially been used or new strategies that offer potential solutions to promote a rapid production growth of 99mTc. These techniques have been selected, highlighted, and evaluated to imply their impact on developing 99mTc production. Furthermore, their advantages and limitations, current situation, and long-term perspective were also discussed. It appears that, on the one hand, careful attention needs to be devoted to enhancing the 99Mo economy. It can be achieved by utilizing 98Mo neutron activation in commercial nuclear power reactors and using accelerator-based 99Mo production, especially the photonuclear transmutation strategy. On the other hand, more research efforts should be devoted to widening the utility of 99Mo/99mTc generators, which incorporate nanomaterial-based sorbents and promote their development, validation, and full automization in the near future. These strategies are expected to play a vital role in providing sufficient clinical-grade 99mTc, resulting in a reasonable cost per patient dose

    Synchrotron flaring behaviour of CygnusX-3 during the February-March 1994 and September 2001 outbursts

    Full text link
    Aims: In this paper we study whether the shock-in-jet model, widely used to explain the outbursting behaviour of quasars, can be used to explain the radio flaring behaviour of the microquasar Cygnus X-3. Method: We have used a method developed to model the synchrotron outbursts of quasar jets, which decomposes multifrequency lightcurves into a series of outbursts. The method is based on the Marscher & Gear (1985) shock model, but we have implemented the modifications to the model suggested by Bjornsson & Aslaksen (2000), which make the flux density increase in the initial phase less abrupt. We study the average outburst evolution as well as specific characteristics of individual outbursts and physical jet properties of Cyg X-3. Results: We find that the lightcurves of the February-March 1994 and September 2001 outbursts can be described with the modified shock model. The average evolution shows that instead of the expected synchrotron plateau, the flux density is still increasing during the synchrotron stage. We also find that high frequency peaking outbursts are shorter in duration than the ones peaking at lower frequencies. Finally, we show that the method can be used, complementary to radio interferometric jet imaging, for deriving the physical parameters such as the magnetic field strength and the energy density of relativistic electrons in the jet of Cyg X-3.Comment: 8 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    2003--2005 INTEGRAL and XMM-Newton observations of 3C 273

    Get PDF
    The aim of this paper is to study the evolution of the broadband spectrum of one of the brightest and nearest quasars 3C 273. We analyze the data obtained during quasi-simultaneous INTEGRAL and XMM monitoring of the blazar 3C 273 in 2003--2005 in the UV, X-ray and soft gamma-ray bands and study the results in the context of the long-term evolution of the source. The 0.2-100 keV spectrum of the source is well fitted by a combination of a soft cut-off power law and a hard power law. No improvement of the fit is achieved if one replaces the soft cut-off power law by either a blackbody, or a disk reflection model. During the observation period the source has reached the historically softest state in the hard X-ray domain with a photon index Γ=1.82±0.01\Gamma=1.82\pm 0.01. Comparing our data with available archived X-ray data from previous years, we find a secular evolution of the source toward softer X-ray emission (the photon index has increased by ΔΓ≃0.3−0.4\Delta\Gamma\simeq 0.3-0.4 over the last thirty years). We argue that existing theoretical models have to be significantly modified to account for the observed spectral evolution of the source.Comment: 11 pages, accepted to A&

    Opacity effects and shock-in-jet modelling of low-level activity in Cygnus X-3

    Full text link
    We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability timescale to be 20 minutes at 43 GHz and 30 minutes at 15 GHz, implying source sizes of 2 to 4 AU. We detect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of approximately 10 minutes between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free-free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the lightcurves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer-lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the timescale and frequency at which this is attained. Brighter flares evolve on longer timescales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalisation and magnetic field strength both playing a role in setting the strength of the outburst.Comment: Accepted for publication in MNRAS. 15 pages, 9 figure

    A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies

    Full text link
    Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were analyzed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE. These broad-band data were fitted with a model assuming a thermal Comptonization as a primary continuum component. We tested several model options through a fitting of the Comptonized continuum accompanied by a complex absorption and a Compton reflection. Both the large data set used and the model space explored allowed us to accurately determine a mean temperature kTe of the electron plasma, the Compton parameter y and the Compton reflection strength R for the majority of objects in the sample. Our main finding is that a vast majority of the sample (20 objects) is characterized by kTe < 100 keV, and only for two objects we found kTe > 200 keV. The median kTe for entire sample is 48(-14,+57) keV. The distribution of the y parameter is bimodal, with a broad component centered at ~0.8 and a narrow peak at ~1.1. A complex, dual absorber model improved the fit for all data sets, compared to a simple absorption model, reducing the fitted strength of Compton reflection by a factor of about 2. Modest reflection (median R ~0.32) together with a high ratio of Comptonized to seed photon fluxes point towards a geometry with a compact hard X-ray emitting region well separated from the accretion disc. Our results imply that the template Seyferts spectra used in AGN population synthesis models should be revised.Comment: 26 pages, 12 figures, accepted for publication in MNRA

    Gas chromatography of indium in macroscopic and carrier-free amounts using quartz and gold as stationary phases

    Get PDF
    The chemical investigation of E113 is likely to become soon feasible. The determination of chemical properties of carrier-free amounts of the lighter homologues of element 113, especially indium and thallium, allows designing experimental set-ups and selecting experimental conditions suitable for performing these studies. Here, we present investigations of the interaction of indium species with quartz and gold surfaces. Deposition temperatures as well as enthalpies of adsorption were determined for indium Tdep=739±20°C (−ΔHads(In)=227±10kJ mol−1) and for indium hydroxide Tdep=250±20°C (−ΔHads(InOH)= 124±10kJ mol−1) respectively, on quartz. In case of adsorption of indium on a gold surface only a lower limit of the deposition temperature was established Tdep>980°C (−ΔHads(In)≥315±10kJ mol−1). Investigations of macroscopic amounts of indium in thermosublimation experiments at similar experimental conditions were instrumental to establish a tentative speciation of the observed indium specie

    Simultaneous observations of the quasar 3C 273 with INTEGRAL, XMM-Newton and RXTE

    Full text link
    INTEGRAL has observed the bright quasar 3C 273 on 3 epochs in January 2003 as one of the first observations of the open programme. The observation on January 5 was simultaneous with RXTE and XMM-Newton observations. We present here a first analysis of the continuum emission as observed by these 3 satellites in the band from 3 keV to 500 keV. The continuum spectral energy distribution of 3C 273 was observed to be weak and steep in the high energies during this campaign. We present the actual status of the cross calibrations between the instruments on the three platforms using the calibrations available in June 2003.Comment: 4 figures, accepted for publication in A+A letter
    • …
    corecore