256 research outputs found

    Seasonal and spatial accumulation of heavy metals in Cystoseira barbata C. Agardh 1820 from Northeastern Black Sea coast

    Get PDF
    This study is aimed to reveal the heavy metal contamination in brown seaweed species distribute in the Northeastern Black Sea coast. This study provides important preliminary information about heavy metal accumulation in brown seaweed. Indirectly, this also provides information on the environmental pollution in the study area. Heavy metal accumulations observed were Cr: 6.8-34.9 Mn: 32.8-116, Fe: 1721-5685, Co: 0.90-3.12, Ni: 31.8-173, Cu: 6.01-20.3, Zn: 24.3-88.2, Cd: 0.16-0.69 and Pb: 0.84-3.15 mg kg-1. Such studies should be conducted occasionally to update the knowledge on accumulation of heavy metals in marine organisms and to verify the results of this study

    Medial olivocochlear suppression in musicians versus non-musicians

    Get PDF
    The medial olivocochlear efferent (MOCE) branch synapses with outer hair cells (OHCs), and the efferent pathway can be activated via a contralateral acoustic stimulus (CAS). The activation of MOCE can change OHC motile responses and convert signals that are capable of controlling the sensitivity of the peripheral hearing system in a frequency-specific manner. The aim of this study was to examine the MOCE system activity in professional musicians using transient evoked otoacoustic emission test and CAS. Musician group showed stronger suppression in all frequency bands in the presence of CAS

    Studies Directed toward the Synthesis of Aspidophytine: Construction of Its Perhydroquinoline Core

    Get PDF
    We have developed an efficient route for the synthesis of the perhydroquinoline core of the indole alkaloid aspidophytine (2), starting from commercially available and inexpensive 3-acetylpyridine. This densely functionalized perhydroquinoline core displays four contiguous stereocenters including an all-carbon quaternary center. The synthetic sequence features a highly effective Diels-Alder reaction using a carbamate-substituted siloxy diene accompanied by a spontaneous intramolecular substitution of the newly formed 3°-alkyl bromide with a carbamate group. The installation of the electron-rich aniline moiety was accomplished via a TBSOTf-mediated intramolecular aza-Michael reaction, and the relative stereochemistry of the aza-Michael product (30) was confirmed by X-ray crystallographic analysis. Among the useful transformations that were developed through this study is a highly enantioselective Diels-Alder reaction of a versatile cyclic carbamate siloxy diene. © 2016 American Chemical Society

    Influencia de un injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía

    Get PDF
    This study aimed to investigate the effects of grafting on the fatty acid profile and some physicochemical properties of watermelon seed and seed oil. The ‘Crimson Tide’ cultivar was used as the scion while two wild watermelon (Citrullus lanatus var. citroides (A1 and A2)), one Lagenaria siceraria (A3) and one Cucurbita maxima Duchesne x Cucurbita moschata Duchesne (A4) were used as rootstocks. The use of rootstock significantly influenced the fatty acid profile and the physical parameters of seeds and seed oils. The highest linoleic acid ratio was found in the seed oil from A1 and A2, the oil from A3 had the highest oleic acid ratio. The results showed that the content and acid value in seed oils were improved, and that total phenolic compounds and antioxidant activity of both seed and oil were decreased by grafting. Wild rootstocks can be used in watermelon cultivation to obtain a watermelon seed which is rich in linoleic acid.El objetivo de este estudio fue investigar los efectos del injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía. El cultivar ‘Crimson Tide’ se utilizó como vástago, mientras que dos sandías silvestres (Citrullus lanatus var. Citroides (A1 y A2)), una Lagenaria siceraria (A3) y una Cucurbita maxima Duchesne x Cucurbita moschata Duchesne (A4) se utilizaron como portainjertos. El uso de portainjertos influyó significativamente en el perfil de ácidos grasos y los parámetros físicos de semillas y aceites de semillas. La proporción de ácido linoleico más alta se encontró en el aceite de semillas de A1 y A2, el aceite de A3 tuvo la proporción de ácido oleico más alta. Los resultados mostraron que el contenido de aceite y el índice de acidez mejoró y los compuestos fenólicos totales y la actividad antioxidante tanto de la semilla como del aceite se redujeron mediante el injerto. Para obtener un aceite de semillas de sandía rico en ácido linoleico, se pueden utilizar portainjertos silvestres en el cultivo de sandía

    The SEA-UNICORN European COST Action: Advancing Knowledge on Marine Connectivity to Support Transition to a Sustainable Blue Economy

    Get PDF
    The European COST Action “Unifying Approaches to Marine Connectivity for improved Resource Management for the Seas” (SEA-UNICORN, 2020‐2025) is an international research coordination initiative that unites an interdisciplinary community of scientists and policymakers from over 100 organizations across Europe and beyond. It is establishing a globally harmonized framework to deliver actionable, transdisciplinary knowledge of marine functional connectivity, promoting a sustainable blue economy and ocean conservation. Planning sustainable development in rapidly changing oceans requires a thorough comprehension of marine biodiversity and the processes underpinning the functioning of ecosystems. Connectivity among marine populations and habitats facilitates the persistence and resilience of vulnerable species and ecosystems and controls the spread of invasive species. Constructing effective networks of restoration or conservation areas and promoting sustainable harvesting requires knowledge of connectivity. SEA-UNICORN advances worldwide collaboration by coordinating the collection, sharing, and application of knowledge on species, community, and ecosystem connectivity at sea and at the land‐sea interface. It engages scientists from diverse areas and early-career researchers and creates a stronger match between natural and social science and policy needs to better address key environmental issues that challenge the future of our planet
    corecore