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Abstract
Following Grossman and Katz (Non-Newtonian Calculus, 1972), we construct the sets
B(A) and C(A) of geometric complex-valued bounded and continuous functions,
where A denotes the compact subset of the complex plane C. We show that the sets
B(A) and C(A) of complex-valued bounded and continuous functions form a vector
space with respect to the addition and scalar multiplication in the sense of
multiplicative calculus. Finally, we prove that B(A) and C(A) are complete metric
spaces.
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1 Introduction
Grossman andKatz [], introduced the non-Newtonian calculus consisting of the branches
of geometric, anageometric and biogeometric calculus, etc. Bashirov et al. [] gave re-
sults with applications to the well-known properties of derivative and integral in the
multiplicative calculus. Uzer [] extended the multiplicative calculus to the complex-
valued functions, was interested in the statements of some fundamental theorems and
concepts of multiplicative complex calculus, and demonstrated some analogies between
the multiplicative complex calculus and the classical calculus by theoretical and nu-
merical examples. Recently, Çakmak and Başar [] introduced the field R(N) of non-
Newtonian real numbers and gave the triangle and Minkowski’s inequalities in the sense
of non-Newtonian calculus. They defined the complete metric spaces ω(N), �∞(N),
c(N), c(N) and �p(N) of all bounded, convergent, null and p-absolutely summable se-
quences in the sense of non-Newtonian calculus over the field R(N). Quite recently,
Tekin and Başar [] have introduced the spaces ω∗, �∗∞, c∗, c* and �∗

p over the non-
Newtonian complex field C

∗ and obtained the corresponding results for these spaces,
where p >̈ ̈.
Following Bashirov et al. [, , ] and Uzer [], Türkmen and Başar [] obtained cor-

responding results for multiplicative complex numbers and the concept of multiplicative
metric.
Following [], themain purpose of this paper is the investigation of the space of functions

defined by the multiplicative calculus. Following Türkmen and Başar [], first we define
the set C(G) of multiplicative complex numbers by
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C(G) :=
{
w = u⊕ ig � v : u, v ∈R(G) and ig =

√
� eG

}

=
{
ez = ex · (ey)ln ei : ex, ey ∈R(G) and ei = e

√
–}

=
{
ex+iy : x ∈R; –π < y≤ π and i =

√
–

}

=
{
ez : z ∈Cstr

}
,

where R(G) denotes the set of multiplicative real numbers and

Cstr := {z = x + iy : x ∈R; –π < y≤ π}.

It is easy to see that C(G) = C \ {}. It is clear from the definition of complex exp func-
tion that α(z) = ez 
=  for all z ∈ Cstr. Since α-generator is a bijective function, it maps all
complex numbers without zero to the set of values.
We suppose throughout that the A is a compact subset of the complex plane C and

(C(G),⊕,�) denotes the geometric complex field introduced by Türkmen and Başar [].
We will consider the sets B(A) and C(A) in the following forms:

B(A) :=
{
f : A→C(G) | ∃K ∈ R

+  ∀x ∈ A,
∣∣f (x)

∣∣
G ≤ K

}
,

C(A) :=
{
f : A →C(G) | f is continuous on A

}
.

For f , g ∈ B(A) and λ ∈C(G), we define the operations addition (�) and scalar multiplica-
tion (�) by

� : B(A)× B(A) −→ C(G)
(f , g) −→ (f � g)(x) = f (x)⊕ g(x),

� : C(G)× B(A) −→ C(G)
(λ, f ) −→ (λ� f )(x) = λ � f (x).

2 Multiplicative complex field and related properties
Theorem . The set B(A) is a vector space with respect to the algebraic operations addi-
tion (�) and scalar multiplication (�).

Proof Let x ∈ A, f , g ∈ B(A) and λ ∈ C(G). Then, since f , g ∈ B(A), there exist positive
numbers K and K such that |f (x)|G ≤ K and |g(x)|G ≤ K for all x ∈ A. Therefore, one
can see by the triangle inequality that

∣∣(f � g)(x)
∣∣
G =

∣∣f (x)⊕ g(x)
∣∣
G ≤ ∣∣f (x)

∣∣
G ⊕ ∣∣g(x)

∣∣
G

≤ KK = K ; K ∈R
+.

This means that f � g ∈ B(A).
Since the equality |α � α|G = |α|G � |α|G holds for α,α ∈ C(G), by using this fact,

we observe that

∣∣(λ� f )(x)
∣∣
G =

∣∣λ � f (x)
∣∣
G = |λ|G � ∣∣f (x)

∣∣
G

=
[∣∣f (x)

∣∣
G

]ln |λ|G <∞.

That is, λ� f ∈ B(A).
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(V) Addition is commutative, that is,

(f � g)(x) = f (x)⊕ g(x)

= eln f (x)+ln g(x)

= eln g(x)+ln f (x)

= g(x)⊕ f (x)

= (g � f )(x).

(V) Addition is associative, i.e.,

[
(f � g)� h

]
(x) =

[
f (x)⊕ g(x)

] ⊕ h(x)

= e[ln f (x)+ln g(x)]+lnh(x)

= eln f (x)+[ln g(x)+lnh(x)]

= f (x)⊕ [
g(x)⊕ h(x)

]

=
[
f � (g � h)

]
(x).

(V) An identity element exists for addition. Indeed, since

[f � ](x) = f (x)

�⇒ f (x)⊕ ̇ = f (x)

�⇒ eln f (x)eln ̇ = f (x)

�⇒ f (x) · ̇ = f (x)

�⇒ ̇ = e =  ∈ B(A),

the identity element is the function  such that (x) =  for all x ∈ A.
(V) The inverse element of any f ∈ B(A) exists such that

(f � g)(x) = f (x)⊕ g(x) = eln f (x)eln g(x) = f (x) · g(x) = ,

which yields that

g(x) =


f (x)
for all f ∈ B(A),

i.e., the inverse element of f ∈ B(A) with respect to � is g = /f .
(V) Scalar multiplication distributes to the addition over the field. Indeed, since

[
(λ ⊕ μ)� f

]
(x) = (λ ⊕ μ)� f (x) = e(lnλ+lnμ) ln f (x) = elnλ ln f (x)+lnμ ln f (x)

=
[
λ � f (x)

] ⊕ [
μ � f (x)

]

= (λ� f )(x)� (μ� f )(x),

scalar multiplication distributes to the addition over the field.
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(V) Scalar multiplication distributes to vector addition, i.e.,

[
λ� (f � g)

]
(x) = λ � [

f (x)⊕ g(x)
]

= elnλ·[ln f (x)+ln g(x)]

= elnλ·ln f (x)+lnλ·ln g(x)

=
[
λ � f (x)

] ⊕ [
λ � g(x)

]

= (λ� f )(x)� (λ� g)(x).

(V) Compatibility of scalar multiplication with field multiplication holds:

[
(λ � μ)� f

]
(x) = (λ � μ)� f (x)

= elnλ·lnμ·ln f (x)

= e
lnλ·(lnμ·ln f (x))

= λ � [
μ � f (x)

]

=
[
λ� (μ� f )

]
(x).

(V) e is the identity element of scalar multiplication. It is easy to see that

(e� f )(x) = e� f (x) = eln e ln f (x) = f (x),

which says that the identity element of scalar multiplication is e.
From (V)-(V) vector space axioms are satisfied.HenceB(A) is a vector space overC(G)

with the algebraic operations addition (�) and scalar multiplication (�). �

Theorem . The set C(A) is a subspace of the space B(A) with addition (�) and scalar
multiplication (�).

Proof First, we should show that C(A) 
= ∅ and C(A) ⊂ B(A).
Since (x) =  for all x ∈ A,  ∈ C(A), that is, the set C(A) is not empty.
Suppose that C(A) 
⊂ B(A). Then there is f ∈ C(A) such that |f (xn)|G ≥ n for xn ∈ A

for all n ∈ N. Since A is compact, (xn) is a bounded geometric sequence. So, (xn) has at
least one convergent subsequence (xnk ), say xnk

G→ x, as k → ∞. Since A is closed x ∈ A,
hence f is continuous at the point x. Therefore, for ε > , there exists at least δ >  such
that |f (x)� f (x)|G < ε for all |x� x|G < δ. Now, we choose ε = e. Thus, we have ||f (x)| –
|f (x)||G ≤ |f (x)� f (x)|G < ε which leads to |f (x)|G < e+ |f (x)|G. This contradicts the fact
|f (xn)|G ≥ n. Hence, f ∈ B(A) and the inclusion C(A) ⊂ B(A) holds.
Let x ∈ A, f , g ∈ C(A) and λ,μ ∈C(G). Then we have

[
(λ� f )� (μ� g)

]
(x) =

[
λ � f (x)

] ⊕ [
μ � g(x)

]
= elnλ·ln f (x)+lnμ·ln g(x)

=
[
eln f (x)

]lnλ[eln g(x)
]lnμ

=
[
f (x)

]lnλ[g(x)
]lnμ ∈ C(A).

Therefore, the algebraic operations � and � are closed on C(A).
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Axioms (V)-(V) on C(A) can be fulfilled in the same way as in the proof of Theo-
rem .. �

3 Geometric metric spaces
For each f , g ∈ B(A), we define dG by

dG : B(A)× B(A) −→ R+(G)
(f , g) −→ dG(f , g) = sup

x∈A

∣∣f (x)� g(x)
∣∣
G.

(.)

Theorem . (B(A),dG) is a complete metric space.

Proof Let x ∈ A and f , g,h ∈ B(A). Now,we check themetric axioms. Let ef(y) = f (x), eg(y) =
g(x), eh(y) = h(x) ∈ B(A) for x, y ∈ A, where f, g and h are the complex-valued bounded
functions.
(GM) Non-negative property holds: ̇ = , ∀f , g ∈ B(A) �⇒ dG(f , g) ≥ ̇.
(GM) dG(f , g) = ̇ ⇐⇒ f (x)� g(x) = ̇.
⇒: From the definition of supremum, we can write

dG(f , g) = 

�⇒ sup
x∈A

∣∣f (x)� g(x)
∣∣
G = 

�⇒ ∣∣f (x)� g(x)
∣∣
G ≤ , (.)

and from the definition of geometric absolute value (see []),

∣∣f (x)� g(x)
∣∣
G ≥  = e. (.)

Using (.) and (.), we have

∣∣f (x)� g(x)
∣∣
G = 

�⇒
∣∣∣∣
f (x)
g(x)

∣∣∣∣
G
= 

�⇒
∣∣∣∣
ef(y)

eg(y)

∣∣∣∣
G
= 

�⇒ ∣∣ef(y)–g(y)
∣∣
G = 

�⇒ e|f(y)–g(y)| =  = e

�⇒ ∣∣f(y) – g(y)
∣∣ = 

�⇒ f(y) – g(y) = 

�⇒ f(y) = g(y)

�⇒ ef(y) = eg(y)

�⇒ f (x) = g(x).
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⇐: Conversely, we get

f (x) = g(x)

�⇒
∣∣∣∣
f (x)
g(x)

∣∣∣∣ = 

�⇒ ∣∣f (x)� g(x)
∣∣
G = 

�⇒ sup
x∈A

∣∣f (x)� g(x)
∣∣
G = 

�⇒ dG(f , g) = .

(GM) Symmetry property holds. From the definition of the relation dG, we have

dG(f , g) = sup
x∈A

∣∣f (x)� g(x)
∣∣
G

= sup
x∈A

∣∣∣∣
f (x)
g(x)

∣∣∣∣
G
= sup

y∈A

∣∣∣∣
ef(y)

eg(y)

∣∣∣∣
G

= sup
y∈A

∣∣ef(y)–g(y)
∣∣
G = sup

y∈A
e|f(y)–g(y)|

= sup
y∈A

e|g(y)–f(y)| = sup
y∈A

∣∣eg(y)–f(y)
∣∣
G

= sup
y∈A

∣∣∣∣
eg(y)

ef(y)

∣∣∣∣
G
= sup

x∈A

∣∣∣∣
g(x)
f (x)

∣∣∣∣
G

= sup
x∈A

∣∣g(x)� f (x)
∣∣
G

= dG(g, f ).

(GM) The triangle inequality holds. Firstly we will get

∣∣f (x)� g(x)
∣∣
G =

∣∣∣∣
f (x)
g(x)

∣∣∣∣
G
=

∣∣∣∣
ef(y)

eg(y)

∣∣∣∣
G
=

∣∣ef(y)–g(y)
∣∣
G

= e|f(y)–g(y)| = e|f(y)–h(y)+h(y)–g(y)|

≤ e|f(y)–h(y)|+|h(y)–g(y)| = e|f(y)–h(y)| · e|h(y)–g(y)|

=
∣∣ef(y)–h(y)

∣∣
G · ∣∣eh(y)–g(y)∣∣G =

∣∣∣∣
ef(y)

eh(y)

∣∣∣∣
G

·
∣∣∣∣
eh(y)

eg(y)

∣∣∣∣
G

=
∣∣∣∣
f (x)
h(x)

∣∣∣∣
G

·
∣∣∣∣
h(x)
g(x)

∣∣∣∣
G
=

∣∣f (x)� h(x)
∣∣
G ⊕ ∣∣h(x)� g(x)

∣∣
G.

Therefore, one can easily see that

sup
x∈A

∣∣f (x)� g(x)
∣∣
G ≤ sup

x∈A

[∣∣f (x)� h(x)
∣∣
G ⊕ ∣∣h(x)� g(x)

∣∣
G

]

≤ sup
x∈A

∣∣f (x)� h(x)
∣∣
G ⊕ sup

x∈A

∣∣h(x)� g(x)
∣∣
G,

http://www.journalofinequalitiesandapplications.com/content/2013/1/363


Cakir Journal of Inequalities and Applications 2013, 2013:363 Page 7 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/363

which leads us to the desired inequality

dG(f , g) ≤ dG(f ,h)⊕ dG(h, g).

Properties (GM)-(GM) imply that (B(A),dG) is a metric space.
Suppose that (fn) is a Cauchy sequence in the metric space (B(A),dG). Then, for every

ε > , there is an n = n(ε) such that

dG(fn, fm) = sup
x∈A

∣∣fn(x)� fm(x)
∣∣
G < ε (.)

for all m,n > n. Hence, {fn(x)} is a Cauchy sequence of geometric complex numbers for
each fixed x ∈ A. Since C(G) is complete by Theorem . of Türkmen and Başar [], the
sequence {fn(x)} is convergent, say fn(x)

G→ f (x) for x ∈ A, as n → ∞. By letting m → ∞
with n > n, we derive from (.) that supx∈A |fn(x) – f (x)|G ≤ ε. Therefore we have |fn(x) –
f (x)|G ≤ ε for all n > n and for all x ∈ A. That is to say, for every ε > , there exists at least
n = n(ε) ∈N such that |fn(x) – f (x)|G ≤ ε for all n > n and for all x ∈ A. This means that
the sequence (fn) converges uniformly to f as n→ ∞.
Additionally, since there exists a K >  such that

∣∣f (x)
∣∣
G =

∣∣f (x) – fn(x) + fn(x)
∣∣
G ≤ ∣∣f (x) – fn(x)

∣∣
G ⊕ ∣∣fn(x)

∣∣
G ≤ ε ·K

for all x ∈ A and for all n ∈ N, f ∈ B(A). That is to say, an arbitrary Cauchy sequence in the
metric space (B(A),dG) is convergent. This completes the proof. �

It is obvious that dG is an induced metric from the norm ‖ · ‖G, that is,

‖f ‖G = dG(f , ) = sup
x∈A

∣∣f (x)� (x)
∣∣
G; f ∈ B(A). (.)

So, we have the following as a direct consequence of Theorem ..

Corollary . (B(A),‖ · ‖G) is a Banach space, where ‖ · ‖G is defined by (.) .

Theorem . (C(A),d′
G) is a complete metric space, where d′

G is defined on the space C(A)
by

d′
G : C(A)×C(A) −→ R

+(G)
(f , g) −→ d′

G(f , g) =max
x∈A

∣∣f (x)� g(x)
∣∣
G.

Theorem . leads to the following result.

Corollary . (C(A),‖ · ‖G) is a Banach space, where ‖ · ‖G is defined on the space C(A)
by

‖f ‖G = d′
G(f , ) =max

x∈A
∣
∣f (x)� (x)

∣
∣
G; f ∈ C(A).
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Received: 1 January 2013 Accepted: 19 July 2013 Published: 5 August 2013

References
1. Grossman, M, Katz, R: Non-Newtonian Calculus. Lee Press, Pigeon Cove (1972)
2. Bashirov, AE, Kurpınar, EM, Özyapıcı, A: Multiplicative calculus and its applications. J. Math. Anal. Appl. 337, 36-48

(2008)
3. Uzer, A: Multiplicative type complex calculus as an alternative to the classical calculus. Comput. Math. Appl. 60,

2725-2737 (2010)
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