87 research outputs found
Satellite detection of volcanic ash from Eyjafjallajökull and the threat to aviation
Earth orbiting satellites provide an excellent means for monitoring and measuring emissions from volcanic eruptions. The recent eruption of Eyjafjallajökull in Iceland on 14 April, 2010 and the subsequent movement of the ash clouds were tracked using a variety of satellite instruments as they moved over Europe. Data from the rapid sampling (every 15 minutes) SEVIRI on Meteosat Second Generation were especially useful during this
event as the thermal channels between 10–12 micron could be used to detect the ash signal and perform quantitative ash retrievals of mass loadings, optical depths and effective particle size. Higher-spatial resolution ( 1 km2) information from the MODIS sensors on NASA’s Terra and Aqua platforms were also analysed to determine ash microphysics and also to provide ash cloud top height. High-spectral resolution data from the IASI and AIRS sensors showed that initially quantities of ice, potentially with ash cores, were present, and that multi-species
retrievals could be performed by exploiting the spectral content of the data. Vertically resolved ash layers were detected using the Caliop lidar on board the Calipso platform. Ash was clearly detected over Europe using the infra-red sensors with mass loadings typically in the range 0.1–5 gm-2, which for layers of 500–1000 m thickness, suggests ash concentrations in the range 0.1–10 mg m-3, and therefore represent a potential hazard to aviation.Little SO2 was detected at the start of the eruption, although both OMI and AIRS detected upper-level SO2 on 15 April. By late April and early May, 0.1–0.3 Tg (SO2) could be detected using these sensors.
The wealth of satellite data available, some in near real-time, and the ability of infrared and ultra-violet sensors to detect volcanic ash and SO2 are emphasised in this presentation. The ash/aviation problem can be
addressed using remote sensing measurements, validated with ground-based and air-borne, and combined with dispersion modelling. The volcanic ash threat to aviation can be ameliorated by utilising these space-based
resources
Satellite detection of volcanic ash from Eyjafjallajökull and the threat to aviation
Earth orbiting satellites provide an excellent means for monitoring and measuring emissions from volcanic eruptions. The recent eruption of Eyjafjallajökull in Iceland on 14 April, 2010 and the subsequent movement of the ash clouds were tracked using a variety of satellite instruments as they moved over Europe. Data from the rapid sampling (every 15 minutes) SEVIRI on Meteosat Second Generation were especially useful during this
event as the thermal channels between 10–12 micron could be used to detect the ash signal and perform quantitative ash retrievals of mass loadings, optical depths and effective particle size. Higher-spatial resolution ( 1 km2) information from the MODIS sensors on NASA’s Terra and Aqua platforms were also analysed to determine ash microphysics and also to provide ash cloud top height. High-spectral resolution data from the IASI and AIRS sensors showed that initially quantities of ice, potentially with ash cores, were present, and that multi-species
retrievals could be performed by exploiting the spectral content of the data. Vertically resolved ash layers were detected using the Caliop lidar on board the Calipso platform. Ash was clearly detected over Europe using the infra-red sensors with mass loadings typically in the range 0.1–5 gm-2, which for layers of 500–1000 m thickness, suggests ash concentrations in the range 0.1–10 mg m-3, and therefore represent a potential hazard to aviation.Little SO2 was detected at the start of the eruption, although both OMI and AIRS detected upper-level SO2 on 15 April. By late April and early May, 0.1–0.3 Tg (SO2) could be detected using these sensors.
The wealth of satellite data available, some in near real-time, and the ability of infrared and ultra-violet sensors to detect volcanic ash and SO2 are emphasised in this presentation. The ash/aviation problem can be
addressed using remote sensing measurements, validated with ground-based and air-borne, and combined with dispersion modelling. The volcanic ash threat to aviation can be ameliorated by utilising these space-based
resources
Arctic smoke ? record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe
International audienceIn spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near Ny Ålesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also enhanced. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing ? black carbon concentrations were the highest ever recorded at Zeppelin ?, and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at Ny Ålesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly enhanced levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke aerosols. This paper shows that, to date, BB has been underestimated as a source of aerosol and air pollution for the Arctic, relative to emissions from fossil fuel combustion. Given its significant impact on air quality over large spatial scales and on radiative processes, the practice of agricultural waste burning should be banned in the future
Elemental and Organic Carbon in PM10: a One Year Measurement Campaign within the European Monitoring and Evaluation Programme EMEP
In the present study, ambient aerosol (PM10) concentrations of elemental carbon (EC), organic carbon (OC), and total carbon (TC) are reported for 12 European rural background sites and two urban background sites following a one-year (1 July 2002¿1 July 2003) sampling campaign within the European Monitoring and Evaluation Programme, EMEP (http://www.emep.int/). The purpose of the campaign was to assess the feasibility of performing EC and OC monitoring on a regular basis and to obtain an overview of the spatial and seasonal variability on a regional scale in Europe. Analyses were performed using the thermal-optical transmission (TOT) instrument from Sunset Lab Inc., operating according to a NIOSH derived temperature program.
The annual mean mass concentration of EC ranged from 0.17±0.19µgm-3 (mean ± SD) at Birkenes (Norway) to 1.83±1.32µgm-3 at Ispra (Italy). The corresponding range for OC was 1.20±1.29µgm-3 at Mace Head (Ireland) to 7.79±6.80µgm-3 at Ispra. On average, annual concentrations of EC, OC, and TC were three times higher for rural background sites in Central, Eastern and Southern Europe compared to those situated in the Northern andWestern parts of Europe. Wintertime concentrations of EC and OC were higher than those recorded during summer for the majority of the sites. Moderate to high Pearson correlation coefficients (rp) (0.50¿0.94) were observed for EC versus OC for the sites investigated. The lowest correlation coefficients were noted for the three Scandinavian sites: Aspvreten (SE),
Birkenes (NO), and Virolahti (FI), and the Slovakian site Stara Lesna, and are suggested to reflect biogenic sources, wild and prescribed fires. This suggestion is supported by the fact that higher concentrations of OC are observed for summer compared to winter for these sites. For the rural background sites, total carbonaceous material accounted for 30±9% of PM10, of which 27±9% could be attributed to organic matter (OM) and 3.4±1.0% to elemental matter (EM). OM was found to be more abundant than SO2- 4 for sites reporting both parametersJRC.H.2-Climate chang
Gridded global surface ozone metrics for atmospheric chemistry model evaluation
The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner
Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol
The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH=85% and λ=550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters
Overvåking av langtransportert forurenset luft og nedbør. Atmosfærisk tilførsel, 1995.
NILU utfører overvåking av luft- og nedbørkjemi under ulike overvåkingsprogrammer ved en rekke målesteder i Norge. Denne rapporten beskriver resultatene fra 1995, og disse er sammenlignet med tidligere år
- …