143 research outputs found

    Macromolecular approaches to prevent thrombosis and intimal hyperplasia following percutaneous coronary intervention.

    Get PDF
    Cardiovascular disease remains one of the largest contributors to death worldwide. Improvements in cardiovascular technology leading to the current generation of drug-eluting stents, bioresorbable stents, and drug-eluting balloons, coupled with advances in antirestenotic therapeutics developed by pharmaceutical community, have had a profound impact on quality of life and longevity. However, these procedures and devices contribute to both short- and long-term complications. Thus, room for improvement and development of new, alternative strategies exists. Two major approaches have been investigated to improve outcomes following percutaneous coronary intervention including perivascular delivery and luminal paving. For both approaches, polymers play a major role as controlled research vehicles, carriers for cells, and antithrombotic coatings. With improvements in catheter delivery devices and increases in our understanding of the biology of healthy and diseased vessels, the time is ripe for development of novel macromolecular coatings that can protect the vessel lumen following balloon angioplasty and promote healthy vascular healing

    Methotrexate Liposomes - A Reliable Therapeutic Option

    Get PDF
    Liposomes were proposed as drug vector systems in the treatment of many diseases. The following characteristics recommend the liposomes as attractive candidates for drug transportation: solubilisation, duration of action, targeting potential and internalisation. Methotrexate, a folate antagonist, was originally developed as an antineoplastic agent and subsequently used in inflammatory and/or immunosuppressive diseases. Its side effects have led researchers to direct their efforts to reduce toxicity, while maintaining efficacy of methotrexate. Liposomes with methotrexate as such, as well as its disodium salt, were prepared using two methods. The liposomes were characterized in terms of structure, size, degree of poly‐dispersion and encapsulation efficiency. The effect of methotrexate incorporated in liposomes has been investigated in vitro on human lymphoblastic cell line K562. Methotrexate incorporated into liposomes moderately reduces the proliferation of K562 cells, but significantly inhibits RNA synthesis. The cellular activation is probably the main target of the drug and not the neoplastic proliferation of cells. The methotrexate liposomes exhibited significant anti‐inflammatory activity and showed reduced toxicity. Given that the encapsulating of the drug in vector systems may result in the increasing concentration at the site of action, the methotrexate liposomes represent a targeted therapy with an optimized therapeutic efficacy—risk toxicity ratio

    Preparation of PVP hydrogel nanoparticles using lecithin vesicles

    Get PDF
    Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10

    Synexin facilitates fusion of specific phospholipid membranes at divalent cation concentrations found intracellularly.

    Get PDF
    The effect of synexin (an adrenal medullary protein) on the kinetics of Ca2+- and Mg2+-mediated membrane fusion was examined. Membrane fusion was studied by monitoring intermixing of the aqueous contents of phospholipid vesicles. Synexin facilitated Ca2+-mediated, but not Mg2+-mediated, fusion of phosphatidate/phosphatidylethanolamine (1:3) and phosphatidate/phosphatidylserine/phosphatidylethanolamine/cholesterol (1:2:3:2) vesicles. The threshold concentration of Ca2+ for fusion was decreased to approximately equal to 10 microM in the presence of synexin at 6 micrograms/ml and 1.5 mM Mg2+ in vesicle suspensions containing 50 microM lipid. This effect of synexin was drastically inhibited by including 25% phosphatidylcholine (mol/mol) in the vesicle membrane. It is proposed that the Ca2+-dependent lipid-specific enhancement of membrane fusion by synexin contributes to an increase in the sensitivity of specific intracellular membranes to Ca2+ with respect to fusion

    Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion

    Get PDF
    We have examined the early events in Ca2+-induced fusion of large (0.2 μm diameter) unilamellar cardiolipin/phosphatidylcholine and phosphatidylserine/phosphatidylethanolamine vesicles by quick-freezing freeze-fracture electron microscopy, eliminating the necessity of using glycerol as a cryoprotectant. Freeze-fracture replicas of vesicle suspensions frozen after 1-2 s of stimulation revealed that the majority of vesicles had already undergone membrane fusion, as evidenced by dumbbell-shaped structures and large vesicles. In the absence of glycerol, lipidic particles or the hexagonal HII phase, which have been proposed to be intermediate structures in membrane fusion, were not observed at the sites of fusion. Lipidic particles were evident in less than 5% of the cardiolipin/phosphatidylcholine vesicles after long-term incubation with Ca2+, and the addition of glycerol produced more vesicles displaying the particles. We have also shown that rapid fusion occurred within seconds of Ca2+ addition by the time-course of fluorescence emission produced by the intermixing of aqueous contents of two separate vesicle populations. These studies therefore have produced no evidence that lipidic particles are necessary intermediates for membrane fusion. On the contrary, they indicate that lipidic particles are structures obtained at equilibrium long after fusion has occurred and they become particularly prevalent in the presence of glycerol. © 1982

    Synthetic Biology: A Bridge between Artificial and Natural Cells.

    Get PDF
    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications

    Vectorisation intra-oculaire [Drug delivery to target the posterior segment of the eye].

    Get PDF
    Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases

    Liposome Mediated Transfection in Eukaryoic Cell: An Overview

    Get PDF
    In Gene therapy Nucleic acids can be inserted into human cells to provide enhancement or reduction of protein expression for the prevention, treatment or elimination of the problem. For this to happen foreign gene should be inserted in to the cells using different mechanisms. The commonly used ways of gene delivery in to eukaryotic cells are of viral and non viral delivery systems. The non viral delivery are of different types of which the liposome mediated tranfection is the most widely used. Liposome mediated transfect ion represent approved non-toxic biocompatible nanoparticles for the application of medicine. Excellent biocompatibility, low immunogenicity, delivery of large piece of nucleic acid and simplicity of handling are the major advantages one has to see in liposome transfection. But the presence of positive charge on liposomes vectors which may favour nonspecific interaction with negatively charged serum protein, enzymes and causing in to decreased cell adhesion, hemolysis and low transfection are among the disadvantages. In this short review different types of liposomes and their reagents are highlighted. Generally the use liposome in the area of biomedicine (not only for gene delivery) gives a paramount relief specially in this era of drug resistance, vaccine failure, threatening emerging and re-emerging pandemics in the globe. Keywords:-Liposome, Gene therapy, Transfection, Eukaryotic cel

    Development and Validation of a New High-Performance Liquid Chromatography Method for the Simultaneous Quantification of Coenzyme Q10, Phosphatidylserine, and Vitamin C from a Cutting-Edge Liposomal Vehiculization

    Get PDF
    A high-performance liquid chromatography (HPLC) method was developed to simultaneously quantify three widely used active substances such as coenzyme Q10, phosphatidylserine, and vitamin C. This new method optimizes current timing and costs in the analyses of these three active substances. Additionally, since the analyzed compounds were encapsulated on a cutting-edge liposomal formulation, further processing was necessary to be developed prior to HPLC analyses. The technique was studied and adequately validated in accordance with the guidelines of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) regarding selectivity, linearity, accuracy, precision, and robustness. After data treatment of results, linear regressions for all active substances showed an optimal linearity with a correlation coefficient of >0.999 in the concentration range between 70 to 130% of the liposomal formulation and less than a 3% relative standard deviation (RSD) in accuracy and precision

    Poly(β-amino ester)–DNA complexes: Time-resolved fluorescence and cellular transfection studies

    Get PDF
    A large number of different polymers have been developed and studied for application as DNA carriers for non-viral gene delivery, but the DNA binding properties are not understood. This study describes the efficiency of nanoparticle formation by time-resolved fluorescence measurements for poly(β-amino esters), cationic biodegradable polymers with DNA complexation and transfection capability. From the large library of poly(β-amino esters) ten polymers with different transfection efficacies were chosen for this study. The binding constants for nanoparticle formation were determined and compared to with the same method. Although the DNA binding efficiency of the amine groups are similar for both types of polymers, the overall binding constants are an order of magnitude smaller for poly(β-amino esters) than for 25 kDa polyethylenimines, yet poly(β-amino esters) show comparable DNA transfection efficacy with polyethylenimines. Within this series of polymers the transfection efficacy showed increasing trend in association with relative efficiency of nanoparticle formation.Academy of FinlandNational Institutes of Health (U.S.) (Grant CA132091)National Institutes of Health (U.S.) (Grant CA115527
    corecore