20 research outputs found

    ␀-Arrestin-and Dynamin-Dependent Endocytosis of the AT 1 Angiotensin Receptor

    Get PDF
    ABSTRACT The major mechanism of agonist-induced internalization of G protein-coupled receptors (GPCRs) is ␀-arrestin-and dynamindependent endocytosis via clathrin-coated vesicles. However, recent reports have suggested that some GPCRs, exemplified by the AT 1 angiotensin receptor expressed in human embryonic kidney (HEK) 293 cells, are internalized by a ␀-arrestinand dynamin-independent mechanism, and possibly via a clathrin-independent pathway. In this study, agonist-induced endocytosis of the rat AT 1A receptor expressed in Chinese hamster ovary (CHO) cells was abolished by clathrin depletion during treatment with hyperosmotic sucrose and was unaffected by inhibition of endocytosis via caveolae with filipin. In addition, internalized fluorescein-conjugated angiotensin II appeared in endosomes, as demonstrated by colocalization with transferrin. Overexpression of ␀-arrestin1(V53D) and ␀-arrestin1(1-349) exerted dominant negative inhibitory effects on the endocytosis of radioiodinated angiotensin II in CHO cells. GTPase-deficient (K44A) mutant forms of dynamin-1 and dynamin-2, and a pleckstrin homology domain-mutant (K535A) dynamin-2 with impaired phosphoinositide binding, also inhibited the endocytosis of AT 1 receptors in CHO cells. Similar results were obtained in COS-7 and HEK 293 cells. Confocal microscopy using fluorescein-conjugated angiotensin II showed that overexpression of dynamin-1(K44A) and dynamin-2(K44A) isoforms likewise inhibited agonist-induced AT 1 receptor endocytosis in CHO cells. Studies on the angiotensin II concentration-dependence of AT 1 receptor endocytosis showed that at higher agonist concentrations its rate constant was reduced and the inhibitory effects of dominant negative dynamin constructs were abolished. These data demonstrate the importance of ␀-arrestin-and dynamin-dependent endocytosis of the AT 1 receptor via clathrin-coated vesicles at physiological angiotensin II concentrations

    Improved methodical approach for quantitative BRET analysis of G protein coupled receptor dimerization

    Get PDF
    G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, ÎČ2 adrenergic and CB1 cannabinoid receptors

    Bioluminescence Resonance Energy Transfer Reveals the Adrenocorticotropin (ACTH)-Induced Conformational Change of the Activated ACTH Receptor Complex in Living Cells

    Get PDF
    Bioluminescence resonance energy transfer analysis is used to study the interaction between melanocortin 2 receptor (MC2R) accessory protein and the MC2R and provides evidence for protein kinase A-dependent conformational changes in the receptor complex following receptor activation
    corecore