13 research outputs found

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    Gamma-ray production from resonant betatron oscillations of accelerated electrons in a plasma wake

    Get PDF
    The laser-plasma wakefield accelerator is a novel ultra-compact particle accelerator. A very intense laser pulse focused onto plasma can excites plasma density waves. Electrons surfing these waves can be accelerated to very high energies with unprecedented accelerating gradients in excess of 1 GV/cm. While accelerating, electrons undergo transverse betatron oscillations and emit synchrotron-like x-ray radiation into a narrow on-axis cone, which is enhanced when electrons interact with the electromagnetic field of the laser. In this case, the laser can resonantly drive the electron motion, lading to direct laser acceleration. This occurs when the betatron frequency matches the Doppler down-shifted frequency of the laser. As a consequence, the number of photons emitted is strongly enhanced and the critical photon energy is increases to 100’s of ke

    Dementia and Depression with Ischemic Heart Disease: A Population-Based Longitudinal Study Comparing Interventional Approaches to Medical Management

    Get PDF
    BACKGROUND: We compared the proportion of ischemic heart disease (IHD) patients newly diagnosed with dementia and depression across three treatment groups: percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG) and medical management alone (IHD-medical). METHODS AND FINDINGS: De-identified, individual-level administrative records of health service use for the population of Manitoba, Canada (approximately 1.1 million) were examined. From April 1, 1993 to March 31, 1998, patients were identified with a diagnosis of IHD (ICD-9-CM codes). Index events of CABG or PCI were identified from April 1, 1998 to March 31, 2003. Outcomes were depression or dementia after the index event. Patients were followed forward to March 31, 2006 or until censored. Proportional hazards regression analysis was undertaken. Independent variables examined were age, sex, diabetes, hypertension and income quintile, medical management alone for IHD, or intervention by PCI or CABG. Age, sex, diabetes, and presence of hypertension were all strongly associated with the diagnosis of depression and dementia. There was no association with income quintile. Dementia was less frequent with PCI compared to medical management; (HR = 0.65; p = 0.017). CABG did not provide the same protective effect compared to medical management (HR = 0.90; p = 0.372). New diagnosis depression was more frequent with interventional approaches: PCI (n = 626; hazard ratio = 1.25; p = 0.028) and CABG (n = 1124, HR = 1.32; p = 0.0001) than non-interventional patients (n = 34,508). Subsequent CABG was nearly 16-fold higher (p<0.0001) and subsequent PCI was 22-fold higher (p<0.0001) for PCI-managed than CABG-managed patients. CONCLUSIONS: Patients managed with PCI had the lowest likelihood of dementia-only 65% of the risk for medical management alone. Both interventional approaches were associated with a higher risk of new diagnosed depression compared to medical management. Long-term myocardial revascularization was superior with CABG. These findings suggest that PCI may confer a long-term protective effect from dementia. The mechanism(s) of dementia protection requires elucidation

    Azimuthal asymmetry in collective electron dynamics in relativistically transparent laser-foil interactions

    Get PDF
    Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D prole of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarisation direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils

    Femtosecond multimodal imaging with a laser-driven X-ray source

    No full text
    AbstractLaser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot.</jats:p
    corecore